文章快速检索    
 
  中国地质 2021, Vol. 48 Issue (1): 161-172  
0
引用本文
苏扣林, 丁兴, 郭宇, 石晓龙. 2021. 广州增城地质公园安山质-流纹质火山岩地球化学特征及Rb-Sr年龄测定[J]. 中国地质, 48(1): 161-172.  
Su Koulin, Ding Xing, Guo Yu, Shi Xiaolong. 2021. Rb-Sr dating and geochemistry of andesitic-rhyolitic volcanics in the Zengcheng Geopark, Guangzhou, Guangdong Province[J]. Geology in China, 48(1): 161-172. (in Chinese with English abstract).  

广州增城地质公园安山质-流纹质火山岩地球化学特征及Rb-Sr年龄测定
苏扣林1, 丁兴2, 郭宇1, 石晓龙1    
1. 广州市地质调查院, 广东 广州 510440;
2. 中国科学院广州地球化学研究所同位素地球化学国家重点实验室, 广东 广州 510640
摘要:广州市增城地质公园发育有大量的燕山期安山岩和流纹岩,由于缺少详细的岩石地球化学研究,这些火山岩的成因和所代表的大地构造意义一直未明确。文章对上述火山岩进行了较为系统的全岩地球化学以及同位素地球化学分析。研究结果显示,安山岩具有安第斯型火山岩特点,显示Nb、Ta、Sr和Ti的亏损,Isr值介于0.70332~0.7144,平均值0.7092,岩石稀土总量较低(ΣREE=158.9×10-6~215.0×10-6),平均值186.8×10-6,轻重稀土元素分异较弱((La/Yb)N5.06~9.87),平均值7.01,Eu负异常不明显(δEu=0.80~1.38),平均值δEu=0.94。流纹岩具有高钾特点,有明显的Ba、Sr、P、Eu、Ti负异常和Pb、Yb正异常,其Isr值介于0.71393~0.73650,平均值0.72615,岩石稀土总量较低(ΣREE=93.4×10-6~481.5×10-6),平均值285.7×10-6,轻重稀土元素分异弱((La/Yb)N=0.65~9.51),平均值4.35,Eu负异常很明显(δEu=0.01~0.03),平均值δEu=0.02,全岩Rb-Sr同位素年龄为(112±12)Ma。综合的地球化学研究表明,增城地质公园安山质-流纹质火山岩均属壳幔混合成因,其中安山岩以幔源为主,而流纹岩则以壳源为主,分别形成于早侏罗世和早白垩世太平洋板块俯冲碰撞挤压的构造背景下。这对华南地区中生代构造演化的深入认识具有重要的地质意义。
关键词火山岩    安山岩    流纹岩    地球化学特征    构造环境    地质调查工程    增城地质公园    广州    广东    
中图分类号:P588.144;P597.3            文献标志码:A             文章编号:1000-3657(2021)01-0161-12
Rb-Sr dating and geochemistry of andesitic-rhyolitic volcanics in the Zengcheng Geopark, Guangzhou, Guangdong Province
SU Koulin1, DING Xing2, GUO Yu1, SHI Xiaolong1    
1. Guangzhou Geological Survey institute, Guangdong Guangzhou 510440;
2. State Key Laboratory of Isotope Geochemistry Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
Abstract: A large number of Yanshanian andesite and rhyolite rocks are developed in the Zengcheng Geopark in Guangzhou. Due to the lack of detailed petrogeochemical studies, their genesis and the tectonic significance have not been clarified. Therefore, a more systematic analysis was conducted for the whole-rock geochemistry and isotopic geochemistry of these volcanic rocks. The results show that the andesitic rocks are somewhat analogous to the Andes-type volcanic ones, with obviously depleted Nb, Ta, Sr and Ti and low Isr values (0.70332-0.7144, averaging 0.7092), lower rare earth ΣREE(ΣREE=158.9×10-6-215.010-6, averaging 186.8×10-6), with obvious LREE and HREE differentiation((La/Yb)N5.06-9.87, averaging7.01)and negative Eu anomalies (δEu=0.80-1.38, averaging 0.94) in the chondrite-normalized REE distribution patterns. The rhyolitic rocks have high potassium contents with significant negative Ba, Sr, P, Eu, Ti anomalies and positive Pb and Yb anomalies. They are characterized by the Isr values ranging from 0.71393 to 0.73650(averaging 0.72615), lower rare earth ΣREE(ΣREE=93.410-6-481.510-6, averaging 285.710-6)with obvious LREE and HREE fractionation((La/Yb)N 0.65~9.51, averaging 4.35) and negative Eu anomalies (δEu=0.01-0.03, averaging 0.02) in the chondrite-normalized REE distribution patterns. The whole rock Rb-Sr Isotopic age is 112 ±12 ma. The integrated geochemical studies demonstrate that both the andesitic and rhyolitic magmas are of crust-mantle mixing origin, of which the andesitic magma was mainly originated from the mantle and the rhyolitic one mostly from the crust. The andesite rocks and rhyolitic volcanics were formed under the tectonic background of Pacific plate subduction and collision in early Jurassic and early Cretaceous respectively.
Key words: volcanic rocks    andesite    rhyolite    geochemistry    tectonic environment    geological survey engineering    Zengcheng Geopark    Guangzhou    Guangdong Province    

1 引言

中国东南部在中生代广泛分布火山岩,并伴随有大规模成矿地质作用。火山活动与矿床之间的关系以及火山岩、矿床发育的独特构造地质背景引起中国地质学者高度关注(任纪舜, 1990王德滋等, 2002郑永飞, 2008邢光福等, 2009)。广州市增城地质公园火山岩位于华南陆块腹地,前人对该地区吉岭湾组安山岩和热水洞组流纹岩的岩石地球化学特征及形成的大地构造环境研究较少,仅在20世纪50年代末做了1:20万从化幅区域地质调查、70年代做了1:5万鳌头幅—从化幅—永汉幅区域地质调查,90年代末做了1:25万广州市幅区域地质调查报告。上述区调工作奠定了广州地区岩石地层系统。20世纪70年代1:5万区域地质调查时,对研究区中的安山岩做了Rb-Sr同位素测年,年龄值为(187±16)Ma,Isr平均值0.7105。研究区区域基础地质调查资料较为丰富,但缺少针对上述火山岩全岩球化学研究以及对热水洞组流纹岩成岩年龄精准分析。本次在收集前人资料基础上,通过野外地质调查,对区内火山岩进行岩石地球化学特征、成岩年龄及构造环境研究,补充并完善区域地质资料,提高基础地质研究水平。广州市增城地质公园于2013年9月成为广东省级地质公园,项目开展也为未来广东省地质公园升级提供科技支撑。

2 地质背景与样品描述

据1:25万广州市幅区域地质调查报告,广州市增城地质公园二套火山岩是早侏罗世至早白垩世重要的代表性火山岩岩体,对于华南陆块乃至整个中国东部晚中生代地球动力学过程和大地构造环境有着重要意义(王德滋等, 1995王德滋,2004)。增城地质公园火山岩位于北东向广州—从化断裂带和东西向隐伏佛岗—丰良深大断裂带交接部位的东南侧,增城地质公园附近大致呈北西向展布(图 1),分布范围较广。研究区主要出露有泥盆系石英砂岩、泥岩等,白垩纪南昆山单元中粗粒二长花岗岩以及本文研究对象火山岩。在早侏罗世喷发主要为安山岩,系中国东南沿海巨型火山喷发岩带的一部分(南颐,1996),在沿增城地质公园背阴村至大丰门水库吉岭湾组火山岩剖面考察中可见,白垩纪南昆山单元花岗岩与安山岩呈侵入式角度不整合接触,倾向北东,倾角在20°~25°。早白垩世喷发主要为流纹岩,在沿增城地质公园九陂村至长坑电站热水洞组剖面考察中可见,流纹岩与南昆山单元花岗岩呈角度不整合接触,倾向南西,倾角在30°~35°。上述火山岩与泥盆地层中间有第四系覆盖,接触关系不详。

图 1 广州增城地质公园区域地质简图 (a据苏扣林等,2015; b引自1:25万广州市幅地质图,略有修改)1—前震旦系地层;2—泥盆系地层;3—石炭系地层;4—二叠纪花岗岩;5—侏罗纪花岗岩;6—白垩纪花岗岩;7—白垩纪霞石正长岩;8—侏罗系吉岭湾组安山岩;9—白垩系热水洞组流纹岩;10—喷溢相、爆发相;11—火山通道相、潜火山相;12—研究区及取样位置 Fig. 1 Regional geological map of the Zengcheng Geopark, Guangzhou (after Su Koulin et al., 2015 and b modified from the Guangzhou geological map by 1:25 million scale, slightly modify) 1-Pre-Sinian strata; 2-Devonian strata; 3-Carboniferous strata; 4-Permian granite; 5-Jurassic Granite; 6-Cretaceous granite; 7-Cretaceous nepheline, Naga-iwa Rock; 8-Jurassic Andesite of Jilingwan formation; 9-rhyolite of the Cretaceous Reshuidong Formation; 10-effusive phase and explosive phase; 11-volcanic channel facies and subvolcanic facies; 12-research area and sampling position

该区域火山地层有吉岭湾组(Jjl)和热水洞组(Kg),喷发方法为中心式喷发,多以溢流相开始,爆发相结束。吉岭湾组(Jjl)总厚度420.0 m,岩性为喷溢相灰黑色、灰绿色安山岩,斑状结构,基质为微晶质结构,块状构造。斑晶主要为斜长石和少量的角闪石、普通辉石,斜长石斑晶呈自形板状、板柱状,大小在0.1~3 mm,含量在10%~20%,角闪石、普通辉石斑晶,呈粒状或柱状,大小在0.1~2 mm,含量在3%~5%。基质主要为斜长石,为微晶质,含量在60%~80%,次要成分有角闪石、黑云母,为隐晶质或微晶质,含量在5%~8%,微量矿物主要有磷灰石、锆石、磁铁矿、榍石及黄铁矿等。野外露头及岩石显微照片见图 2(ab)

图 2 广州增城地质公园安山岩和流纹岩标本及正交偏光显微照片 a, b—灰黑色-灰绿色安山岩, 具有斑状结构,基质为玻晶交织结构;c, d—灰黑色-浅肉红色流纹岩,岩石具有气孔构造和斑状结构,斑晶有熔蚀结构,基质为纤维放射状球粒结构; Am—角闪石;Pl—斜长石;Q—石英 Fig. 2 Andesite and rhyolite specimens and cross-polarized microphotographs from the Zengcheng Geopark, Guangzhou a and b-gray-black-gray-green andesite with a porphyritic texture and a glassy-crystalline matrix; c and d—gray-black-pale red rhyolite with pore structure and porphyry structure, phenocryst with ablation structure and fibrous radial spheroidal matrix; Am-amphibole; Pl-plagioclase; Q-quartz

热水洞组(Kg):总厚度>385.0 m,岩性为喷溢相深灰色流纹岩,斑状结构,基质为球粒结构,流动构造,斑晶主要为石英和钾长石,含量在3%~8%,石英呈粒状或浑圆状,大小在0.5~2 mm,熔蚀现象明显。基质为纤维放射状球粒组成,含量在92%~ 95%,大小在0.1~0.25 mm,为长英质矿物成分。微量矿物主要有磷灰石、锆石、金红石及钍石等。野外露头及岩石显微照片见图 2(cd)

3 岩石地球化学特征 3.1 分析方法

主量元素、微量元素和稀土元素由澳实矿物实验室(广州)完成,同位素分析由澳实总部(澳大利亚)实验室完成。其中主量元素采用PAnalytic PW2440型荧光光谱仪(XRF)分析,微量元素采用Agilent 7700x型电感耦合等离子体发射质谱(ICPMS)分析,稀土元素采用Perkin Elmer Elan 9000型电感耦合等离子体发射质谱(ICP-MS)分析。XRF主量元素分析方法与Goto and Tatum(1994)报道的相似,分析精度优于1%。微量元素分析流程和相关参数见刘颖等(1996),分析精度优于5%。Rb-Sr和Sm-Nd同位素测试,采用同位素稀释-扇形电感耦合等离子质谱(ID-ICP-SFMS)测定Rb-Sr和Sm-Nd的精确含量,采用Eichrom锶离子交换色谱柱分离富集Sr,采用AG50-X8离子交换柱分离稀土元素、并采用Ln树脂HDEHP基离子交换色谱分离Nd与Sm,然后采用ThermoScientific NEPTUNE型多接收器电感耦合等离子体质谱仪(MC-ICPMS)在静态模式下分别测定Sr同位素比值和Nd同位素比值,Sr同位素分析精度可达到RSD < 0.01%,Nd同位素分析精度可达RSD < 0.005%,详细的分析流程见梁细荣等(2003)

3.2 主量元素

吉岭湾组安山岩岩石样品10件,烧失量变化较大(LOI=1.09~5.97),平均值3.06,个别样品可能遭受了绿泥石化。主量元素(表 1)显示:SiO2含量58.77%~64.71%,Al2O3含量15.37%~18.43%,平均值16.72%,TiO2含量0.77%~1.03%,平均值0.87%,与岛弧火山岩的TiO2接近(平均值0.8%);MgO含量0.81% ~1.73%,平均值1.46%;CaO含量0.82% ~ 4.34%,平均值3.05%;全碱(ALK)4.02~9.75,平均值5.88;铝碱比(ACNK)0.93~2.60,平均值1.37;FeOT/ MgO 3~7,平均值4.40。TAS图解大部分落在亚碱系列安山岩区(图 3),个别样品落在英安岩区或粗面英安岩区内,可能与岩石绿泥石化蚀变有关,因此,岩石主体上属亚碱系列安山岩。SiO2-K2O图解和Na2O-K2O图解落在高钾玄质区(图 4a图 4b)。

表 1 广州增城地质公园火山岩石主要元素(%)和微量元素(10-6)组成 Table 1 Major element(%) and trace elements(10-6) compositions of volcanic rocks in the Zengcheng Geopark, Guangzhoug
图 3 广州增城地质公园安山岩和流纹岩TAS图解(据Middlemost, 修改,1994 1—背阴安山岩;2—大尖山流纹岩 Fig. 3 TAS diagrams of andesite and rhyolite in the Zengcheng Geopark, Guangzhou (modified from Middlemost, 1994) 1—Beiyin andesite; 2—Dajianshan rhyolite
图 4 广州增城地质公园安山岩和流纹岩SiO2-K2O图解(a, Peccerillo et al., 1976)和Na2O-K2O图解(b) 1—背阴安山岩;2—大尖山流纹岩 Fig. 4 SiO2 vs. K2O(a, Peccerillo et al., 1976) and Na2O vs. K2O(b) diagrams of andesite and rhyolite in the Zengcheng Geopark, Guangzhou 1-Beiyin andesite; 2-Dajianshan rhyolite

热水洞组流纹岩岩石样品9件,烧失量变化在(LOI=0.88~3.99),平均值1.88,主量元素统计结果(表 1)显示出以下特点:①高硅(SiO2=74.11% ~ 79.90%),平均值76.13%;②富铝(Al2O3=11.37%~ 14.33%),平均值12.53%;③低钛(TiO2=0.07% ~ 0.14%),平均值0.10%;④贫钙(CaO=0.01% ~ 0.53%),平均值0.12%;⑤低镁(MgO=0.02% ~ 0.18%),平均值0.07%。全碱(ALK)3.55~8.15,平均值6.67,铝碱比(ACNK)1.04~3.05,平均值1.68,FeOT/MgO 7~50,平均值35.22,TAS图解落在亚碱系列流纹岩区(图 3),SiO2-K2O图解和Na2O-K2O图解分别落在钾玄质系列和超钾质区(图 4a图 4b)。

3.3 微量元素

吉岭湾组安山岩原始地幔标准化微量元素蛛网图(图 5a)显示,Rb、Ba、K、Pb有正异常,Nb、Ta、Sr、Ti有明显亏损。球粒陨石标准化稀土元素配分图(图 5b)呈平坦型,岩石稀土总量较低(ΣREE= 158.9×10-6~215.0×10-6),平均值186.8×10-6,轻重稀土元素分异较弱((La/Yb)N=5.06~9.87),平均值7.01,Eu负异常不明显(δEu=0.80~1.38),平均值δEu=0.94。

图 5 广州增城地质公园安山岩和流纹岩微量元素蛛网图(a)和稀土元素配分图(b) 图a标准化值据Su et al., 1989, b标准化值据McDonough et al., 1995;1—背阴安山岩;2—大尖山流纹岩 Fig. 5 Primitive mantle-normalized trace element spider diagrams and chondrite-normalized REE distribution patterns of andesite and rhyolite in the Zengcheng Geopark, Guangzhou (a normalization data after Sun et al., 1989; b normalization data after McDonough et al., 1995; 1—Beiyin andesite; 2—Dajianshan rhyolite)

热水洞组流纹岩原始地幔标准化微量元素蛛网图(图 5a)显示,Rb、Th、U、Pb、Yb有正异常,Ba、Sr、P、Ti、Eu有明显亏损,并形成尖锐谷。球粒陨石标准化稀土元素配分图呈平坦型(图 5b)显示,岩石稀土总量较低(ΣREE=93.4×10-6~481.5×10-6),平均值285.7 × 10-6,轻重稀土元素分异弱((La/Yb)N= 0.65~9.51),平均值4.35,Eu负异常很明显(δEu= 0.01~0.03),平均值δEu=0.02。

3.4 Rb-Sr同位素特征

吉岭湾组安山岩6件样品,Rb-Sr同位素测试结果见表 2Isr值0.70332~0.7144,平均值0.7092,Isr值变化范围较小,相对集中,显示岩浆源具有同源性。热水洞组流纹岩7件样品,Rb-Sr同位素测试结果见表 2Isr值0.71393~0.73650,平均值0.72615,Isr值变化范围较大,显示岩浆为壳源物质混染有关。

表 2 广州增城地质公园火山岩Rb-Sr同位素组成(10-6 Table 2 Rb-Sr isotopic compositions(10-6) of volcanic rocks in Zengcheng Geopark, Guangzhou

吉岭湾组安山岩6件样品,全岩Rb-Sr同位素年龄离散较大(MSWD>1),这可能和个别样品绿泥石化蚀变作用影响有关,加之测试样品少,等时线年龄可信度低。热水洞组流纹岩7件样品,本次获得的全岩Rb-Sr同位素年龄为(112±12)Ma(图 6),MSWD=0.52,等时线年龄可信,该火山岩形成时间为早白垩世相对较为准确,本次测年为区域地质资料提供新的岩石学年龄证据。

图 6 热水洞组流纹岩全岩87Sr/86Sr-87Rb/86Sr等时线图解 Fig. 6 87Sr/86Sr-87Rb/86Sr isochron diagram of rhyolite of Reshuidong Formation
4 讨论 4.1 岩石成因

增城地质公园出露吉岭湾组安山质火山岩和热水洞组流纹质火山岩,吉岭湾组岩石组合以安山岩为主,少量英安岩和粗安岩,热水洞组火山岩主要为流纹岩,岩石普遍高钾,说明岩浆源区有陆壳贡献。增城高滩背阴村吉岭湾组安山质火山岩和洋岛玄武岩(OIB)具有相似的幔源地球化学特征(图 5),从Yb/Ta-Y/Nb图(图 7)中可以看出大部分安山质火山岩位于洋岛玄武岩(OIB)附近。从表 1可知,Rb/Sr平均比值0.43,Rb/Ba平均比值0.15,远高于原始地幔的相应值(分别为0.029和0.088,Hofmann, 1988),Nb/Ta平均比值在14.7,接近于原始岩幔的比值(17.5±2.0,McDonough et al., 1995)。Isr值0.70332~0.7144,平均值0.7092,均小于陆壳平均值0.719(Faure, 1986),说明安山岩岩浆在演化过程中有陆源物质参与,是以幔源成分占优势的幔壳混合物。

图 7 广州增城地质公园安山岩和流纹岩Yb/Ta-Y/Nb图解(据孙赛军等,2015 数据来源:BCC—平均大陆地壳(Rudnick et al., 2003);LCC—大陆下地壳(Rudnick et al., 2003);DMM—亏损地幔(Salters et al., 2004);1—背阴安山岩;2—大尖山流纹岩 Fig. 7 Yb/Ta- Y/Nb diagram of andesite and rhyolite in the Zengcheng Geopark, Guangzhou(after Sun Saijun et al., 2015) Data source: BCC-Bulk continental crust(after Rudnick et al., 2003); LCC- Lower continental crust(after Rudnick et al., 2003); DMMDepleted mantle(after Salters et al., 2004) 1-Beiyin andesite; 2-Dajianshan rhyolite

热水洞组流纹质火山岩具有相似的壳源地球化学特征,从Yb/Ta-Y/Nb图(图 7)中可以看出流纹岩位于壳幔混合附近。从表 1可知,Rb/Sr平均比值10.41,Rb/Ba平均比值6.99,远高于原始地幔的相应值(分别为0.029和0.088;Hofmann, 1988),Nb/Ta平均比值在13.0,接近于上地壳的比值(13.4,Rudnick et al., 2004Isr值0.71393~0.73650,平均值0.72615,均大于陆壳平均值0.719(Faure, 1986),显示流纹岩是以壳源成分占优势的壳幔混合物。

4.2 构造环境

吉岭湾组为高钾亚碱性系列安山岩(图 4a4b),Al2O3含量为15.37%~18.43%,平均值16.72%,铝饱和指数A/CNK在0.93~2.60,变化较大。FeOT/ MgO含量为3~7,平均值4.40。微量元素方面显示Nb、Ta、Sr和Ti的亏损(图 5a),说明安山岩岩浆受到了俯冲板块脱水作用的影响。据张云亮等(2001)在Th/Ta方面的研究资料,Th/Ta在离散型与汇聚型区火山岩环境有明显区别,Th/Ta>10%则具有汇聚型区火山岩特征,吉岭湾组安山岩Th/Ta比值5.21~ 13.64,平均值11.29,仅有1个样品<10%,研究区中安山岩具有汇聚型区火山岩特征。∑Ce/∑Y为5.81,岩石稀土总量较低(平均值ΣREE=186.8×10-6,轻重稀土元素分异较弱(平均值(La/Yb)N =7.01),Eu负异常不明显(平均值δEu=0.94)(图 5b),在La与K2O和P2O5关系(Bailey, 1981)判别,安山岩表现为安第斯型弧火山岩(图 8),Isr平均值0.7092,比较接近于安第斯火山岩的相应范围0.7027~0.709(Hess, 1989),在R1-R2图解投影中(图 9),大部分投影到板块碰撞前期至地幔分异区域。综上所述,研究区中的安山岩应为古太平洋板块俯冲到欧亚板块碰撞挤压形成的大陆弧产物。

图 8 广州增城地质公园安山岩和流纹岩La-K2O和La-P2O5图解(据Bailey, 1981 LI—为大洋岛弧低钾安山岩;CI—为大陆岛弧和大洋岛弧及其他安山岩;AI—为安第斯型安山岩;1—背阴安山岩;2—大尖山流纹岩 Fig. 8 La-K2O and La-P2O5 diagrams of andesite and rhyolite in the Zengcheng Geopark, Guangzhou (modified after Bailey, 1981) LI—ocean arc low potassium andesite; CI—continental and oceanic island arc and others andesites; AI—Andean andesite; 1—Beiyin andesite; 2—Dajianshan rhyolite
图 9 广州增城地质公园安山岩和流纹山岩R1-R2图解 1—亚髻山黑云角闪正长岩(据苏扣林, 2018);2—亚髻山霞石角闪正长岩(据苏扣林, 2018):3—背阴安山岩;4—大尖山流纹岩 Fig. 9 R1-R2 diagram of andesite and rhyolite in the Zengcheng Geopark, Guangzhou 1-Yajishan biotite-hornblende syenite(after SuKoulin, 2018); 2- Yajishan nepheline-hornblends syenite(after SuKoulin, 2018); 3-Beiyin andesite; 4-Dajianshan rhyolite

热水洞组流纹岩具有高钾特点(图 4a图 4b),有明显的Ba、Sr、P、Eu、Ti负异常和Pb、Yb正异常,总体形态与典型的活动大陆边缘构造环境形成的火山岩特征相一致(Pearce et al., 1984)。Th/Ta比值为6.26~9.95,平均值7.90(<10%),具有离散型区火山岩特征。在原始地幔标准化稀土配分图呈海鸥型(图 5b),岩石稀土总量较低(平均值ΣREE= 285.7 × 10-6),轻重稀土元素分异弱(平均值(La/ Yb)N=4.35),Eu负异常很明显(δEu=0.01~0.03),平均值δEu=0.02,与斜长石分离结晶或源区残留斜长石有关。在R1-R2图解投影中(图 9),大部分投影到板块同碰撞期区域。综合上述特征,研究区中的流纹岩应为古太平洋板块俯冲到欧亚板块碰撞挤压的间歇期或伸展期形成的大陆弧产物,同时也反映了岩浆分异结晶等复杂成岩过程。

4.3 区域构造演化

广州增城地质公园火山岩位于华南陆块中部,频临太平洋西岸,古太平洋板块俯冲不可避免影响该地区。张旗(2013)认为中国东部地区不属于环太平洋构造带,不是安第斯活动陆缘环境,与古太平洋无关。毛建仁等(2014)认为华南在中侏罗世(175±5 Ma)进入古太平洋板板由南往北斜向俯冲体系,120 Ma后古太平洋板块发生角度左旋,成为向东亚的正向俯冲,形成了上述火山岩系。通过地质调查、全岩地球化学以及同位素地球化学分析,笔者认为:该地区两套火山岩系是古太平洋板块不同俯冲方向的产物,其中安山岩具有安第斯型弧火山岩特点。

近年来对华南地区中生代火山岩及岩浆岩研究大概可划为3个阶段(舒良树等,2006邢光福,2009;许文良等,2013;潘振帮等,2017),早—晚侏罗世(140~205 Ma)古太平洋板块向欧亚板块俯冲挤压,在东南沿海形成安山岩带以及大范围陆壳重熔型花岗岩的生成(华仁民等,2017),如研究区安山质火山岩、北面佛冈重熔型花岗岩形成时间为154 Ma以及从化黄田埔高分异Ⅰ型花岗岩形成时间为146 Ma(苏扣林,2018)。早白垩世(130~140 Ma)古太平洋板块回撤,华南地区处于拉张构造环境,在研究区北面形成以从化亚髻山霞石正长岩为代表的碱性岩体, 形成时间为135 Ma(苏扣林等,2015苏扣林,2018),早—晚白垩世(65~130 Ma)古太平洋板块向欧亚板块又俯冲挤压,在研究区形成以流纹岩为代表的东南沿海钙碱系列高钾大规模火山爆发以及大范围陆壳重熔型花岗岩的生成,如研究区内南昆山陆壳重熔型花岗岩形成时间为126 Ma以及福建北东沿海大京岩体高分异Ⅰ型花岗岩91 Ma(邱检生等,2008),其后标志燕山运动结束。

5 结论

(1)增城地质公园吉岭湾组为以安山岩为主,少量英安岩和粗安岩,在TAS图上主要为亚碱系列安山岩,少量碱性系列,硅钾图上主要为钾玄质区,其岩石地球化学特征与安第斯型弧火山岩的相应吻合,具有深部地幔特征,来源于以幔源成分占优势的幔壳相互作用。

(2)增城地质公园热水洞组流纹岩,Rb-Sr等时线年龄为(112±12)Ma,为早白垩世,在TAS图上主要为亚碱系列流纹岩区,硅钾图上主要为钾玄质系列,具有高钾和稀土总量较低特点,Eu负异常很明显(平均值δEu=0.02),是以壳源成分占优势的壳幔混合物。

(3)增城地质公园吉岭湾组安山质火山岩形成于早侏罗世古太平洋板块俯冲碰撞挤压形成的大陆弧产物,而热水洞组流纹质火山岩为早白垩世古太平板块俯冲挤压碰撞的间歇期或伸展期造山背景下形成,这一过程对华南地区构造演化具有重要的地质意义。

注释

❶广东省地质局762地质队. 1959.1:20万从化幅区域地质调查报告[R].

❷广东省地质局佛山区测队. 1977.1:5万鳌头幅-从化幅-永汉幅区域地质调查[R].

❸广东省地质调查院.2020.11.1:25万广州市幅区域地质调查报告[R].

致谢: 论文在写作过程中得到两位匿名审稿专家提出了宝贵修改意见,在此表示诚挚的感谢!

参考文献
Bailey J C. 1981. Geochemical criteria for a refined tectonic discrimination of orogenic andesites[J]. Chem.Geol., 32: 139-154. DOI:10.1016/0009-2541(81)90135-2
Bonin B, Giret A. 1985. Contrasting roles of rock-forming minerals in alkaline ring complexes[J]. Journal of African Earth Sciences, 3(1/2): 41-49.
Faure G. 1986. Principles of Isotope Geology[M]. New Yock: Johr Wiley and Sons.
Goto A, Tatum Y. 1994. Quantitative analysis of rock samples by an X-ray fluorescence spectrometer(1)[J]. The Rigaku Journal, 11: 40-59.
Hess P C. 1989. Origin of Igneous Rocks[M]. London: Harvard University Press, 1-310.
Hofmann A W. 1988. Chemical differentiation of the earth:The relationship between mantle, continental crust.and oceanic crust[J]. Earth Planet Sci.Letl., 90: 297-314. DOI:10.1016/0012-821X(88)90132-X
Hua Renmin, Chen Peirong, Zhang Wenlan, Yao Junming, Lin Jinfu, Zhang Zhanhi, Gu Shengyan. 2005. Metallogeneses and their geodynamic settings related to Mesozoic granitoids in the Nanling Range[J]. Geological Journal of China Universities, 11(3): 291-304 (in Chinese with English abstract).
Kay R W, Kay S M. 2002. Andean adakites:Three ways to make them[J]. Acta Petrologica Sinica, 18(3): 303-311.
Liang Xirong, Wei Gangjian, Li Xianhua, Liu Ying. 2003. Precise measurement of 143Nd/144Nd and Sm/Nd raios using multiple-collctors inductively Coupled plasma mass spectrometer MC-ICPMS)[J]. Geochimica, 37: 215-224 (in Chinese with English abstract).
Liu Ying, Liu Haichen, Li Xianhua. 1996. Simultaneous and precise determination of 40 trace elements in rocks samples using ICP-MS[J]. Geochimica, 25(6): 552-558 (in Chinese with English abstract).
Mao Jianren, Li Zilong, Ye Haimin. 2014. Mesozoic tettcto no-magmatic activitcs in Southern part of China:Present research situation and prospect[J]. Science China(earth scichina), 44(12): 2593-261 (in Chinese).
McDonough W F, Sun S S. 1995. The composition of the Earth[J]. Chemical Geology, 120(3/4): 223-253.
Meng Fanchao, Liu Jiaqi, Cui Yan, Gao Jinliang, Liu Xiang, Tong Ying. 2014. Mesozoic tectonic regimes transition in the Northeast China:Constriants from temporal-spatial distribution and associations of volcanic rocks[J]. Acta Petrologica Sinica, 30(12): 3570-3586 (in Chinese with English abstract).
Middlemost E A K. 1994. Naming materials in the magma/igneous rock system[J]. Earth Science Review, 37: 215-224. DOI:10.1016/0012-8252(94)90029-9
Nan Shen, Zhou Guqiang, Zhao Ruxuan, Fu Lifen, Chen Peiquan, Ling Qiuxian, Li Hanmin, Zheng Youming. 1996. Guangdong Rock and Stratum[M]. Wuhan: China University of Geosciences Press, 136-150 (in Chinese).
Pan ZhenJie, Zhang Qi, Chen Gang, Jiao Shoutao, Du Xueliang, Miao Xiuquan, Wang Jinrong, An Yi. 2017. Relation between Mesozoic magmatism and plate subduction in eastern China:Comparison among Zhejiang-Fujian, Japan arc and Andes arc[J]. Acta Petrologica Sinica, 33(5): 1507-1523 (in Chinese with English abstract).
Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25(4): 956-983. DOI:10.1093/petrology/25.4.956
Peccerillo A, Taylor S R. 1976. Geochemistry of Eocene calc-alkaline Volcanic rocks[J]. from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-8. DOI:10.1007%2FBF00384745
Qiu Jiansheg, Xiao E, Hu Jian, Xu XiSheng, JiangShaoyong Li Zhen. 2008. Petrogenesis of highly fractionated Ⅰ-type granites in the coastal area of northeastem Fujian Province:Constraints from zìrcon U-Pb geochronology, geochemìstry and Nd-Hf isotop[J]. Acta Petrologica Sinica, 24(11): 2468-2484 (in Chinese with English abstract).
Ren Jishun. 1990. On the geotectionics of Southern China[J]. Act Geologica Sinica, 64(4): 275-288 (in Chinese with English abstract).
Rudnick R and Gao S. 2003. Composition of the continental crust[J]. Treatise on Geochemistry, 3: 1-64.
Rudnick R, Gao S. 2004. Composition of the continental crust[C]//Holland H D, Turekian K K.Treatise on Geochemistry.Oxford, UK and San Diego, USA: Elsevier Pergamon Ltd, 2004(3): 683.
Salters V and Stracke A. 2004. Composition of the depleted mantle. Geochemistry, Geophysics[J]. Geosystems, 5(5). DOI:10.1029/2003GC000597
Shu Liangshu, Zhou Xinmin, Deng Ping, Yu Xinqi. 2006. Principal geological features of Nanling Tectonic Belt, South China[J]. Geological Review, 52(2): 251-265 (in Chinese with English abstract).
Su Koulin, Ding Xing, Huang Yonggui, Zheng Xiaozhan, Wu Kai, Hu Yongbin. 2015. Compositional differentiation of Early Cretaceou Yajishan syenitic complex and its petrogenes[J]. Acta Petrologica Sinica, 31(3): 829-845 (in Chinese with English abstract).
Su Koulin. 2018. Petro-geochemistry characteristics and tectonic significance of the Yajishan nepheline-syenite at Liangkou, Guangdong Province[J]. Acta Scientiarum Arum Naturalium Universitatis Sunyatseni, 57(1): 110-120 (in Chinese with English abstract).
Su Koulin. 2018. Geochemical characteristics and tectonic significance the highly fractionated Ⅰ-type granites in the Huangtianpu, Guangdong Province[J]. Journal of Geology, 42(2): 197-205 (in Chinese with English abstract).
Sun Saijun, Zhang Lipeng, Ding Xing, Sun Weidong, Zhang Zhaorong. 2015. Zircon U-Pb ages, Hf isotopes and geochemical characteristics of volcanic rocks in Nagqu area, Tibet and their petrogenesis[J]. Acta Petrologica Sinica, 31(7): 2063-2077 (in Chinese with English abstract).
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J(eds.). Magmatism in the Ocean Basins. London, United Kingdom: Geological Society of London, 313-345.
Wang Dezi. 2004. The study of granitic rocks in South China:Looking back and forward[J]. Geological Journal of China Universities, 10(3): 305-314 (in Chinese with English abstract).
Wang Dezi, Zhao Guangtao, Qiu jiansheng. 1995. The tectonic constraint on the late Mesozoic A-type granitoids in Eastern China[J]. Geological Journal of China Universities, 1(2): 13-21 (in Chinese with English abstract).
Wang Dezi, Zhou Xinmin. 2002. Late Mesozoic Granitic Volcanic-Intrusive Complex and Crustal Evolution in Southeast China[M]. Beijing: Science Press, 1-295 (in Chinese).
WangYunling, Zhang Chengjiang, Xiu Shuzhi. 2001. Th/Hf-Ta/Hf identification of tectonic setting of basalts[J]. Act Geologica Sinica, 17(3): 413-421 (in Chinese with English abstract).
Xing Guangfu, Chen Rong, Yang Zhuliang, Zhou Yuzhang, Li Longming, Jiang Yang, Chen Zhihong. 2009. Characteristics and tectonic setting of Late Cretaceous volcanic magmatism in the coastal Southeast China[J]. Acta Petrologica Sinica, 25(01): 77-89 (in Chinese with English abstract).
Zhang Qi. 2013. Is the Mesozoic magmatism in eastern China related to the westward subduction of the Pacific plate?[J]. Acta Petrologica et Mineralogica, 32(1): 113-128 (in Chinese with English abstract).
Zheng Yongfei. 2008. Advances in the study of ultra-high pressure metamorphism and continental collisions:The Case of the Dabie-Sulu orogenic belt[J]. Chinese Science Bulletin, 53(18): 2129-215 (in Chinese). DOI:10.1360/csb2008-53-18-2129
华仁民, 陈培荣, 张文兰, 姚军民, 林锦富, 张展适, 顾晟彦. 2005. 南岭与中生代花岗岩类有关的成矿作用及其大地构造背景[J]. 高校地质学报, 11(3): 291-304. DOI:10.3969/j.issn.1006-7493.2005.03.002
梁细荣, 韦刚健, 李献华, 刘颖. 2003. 利用MC-ICPMS精确测定143Nd/144Nd和Sm/Nd比值[J]. 地球化学, 32(1): 91-96. DOI:10.3321/j.issn:0379-1726.2003.01.013
刘颖, 刘海臣, 李献华. 1996. 用ICP-MS准确测定岩石样品中的40余种微量元素[J]. 地球化学, 25(6): 552-558. DOI:10.3321/j.issn:0379-1726.1996.06.004
毛建仁, 厉子龙, 叶海敏. 2014. 华南中生代构造岩浆活动研究:现状与前景[J]. 中国科学(地球科学), 44(12): 2593-261.
孟凡超, 刘嘉麒, 崔岩, 高金亮, 刘祥, 童英. 2014. 中国东北地区中生代构造体制的转变:来自火山岩时空分布与岩石组合的制约[J]. 岩石学报, 30(12): 3570-3586.
南頣, 周国强, 赵汝旋, 符力奋, 陈培权, 凌秋贤, 黎汉明, 郑有铭. 1996. 广东岩石地层[M]. 武汉: 中国地质大学出版社, 136-150.
潘振杰, 张旗, 陈刚, 焦守涛, 杜雪亮, 苗秀全, 王金荣, 安屹. 2017. 中国东部中生代岩浆活动与板块俯冲的关系——浙闽与日本弧和安第斯弧的对比及其意义[J]. 岩石学报, 33(5): 1507-1523.
邱检生, 肖娥, 胡建, 徐夕生, 蒋少涌, 李真. 2008. 福建北东沿海高分异Ⅰ型花岗岩的成因:锆石U-Pb年代学、地球化学和Nd-Hf同位素制约[J]. 岩石学报, 24(11): 2468-2484.
任纪舜. 1990. 论中国南部的大地构造[J]. 地质学报, 64(4): 275-288.
舒良树, 周新民, 邓平, 余心起. 2006. 南岭构造带的基本地质特征[J]. 地质论评, 52(2): 251-265. DOI:10.3321/j.issn:0371-5736.2006.02.016
苏扣林, 丁兴, 黄永贵, 郑小战, 吴凯, 胡永斌. 2015. 粤中早白垩世亚髻山正长杂岩体的成分分异及岩石成因[J]. 岩石学报,, 31(3): 829-845.
苏扣林. 2018. 广东良口亚髻山霞石正长岩地球化学特征及大地构造意义[J]. 中山大学自然学报, 57(1): 110-120.
苏扣林. 2018. 广东良口黄田埔高分异Ⅰ型花岗岩地球化学特征及大地构造意义[J]. 地质学刊, 42(2): 197-205. DOI:10.3969/j.issn.1674-3636.2018.02.003
孙赛军, 张丽鹏, 丁兴, 孙卫东, 张兆荣. 2015. 西藏那曲中酸性火山岩的锆石U-Pb年龄、Hf同位素和地球化学特征及岩石成因[J]. 岩石学报, 31(7): 2063-2077.
汪云亮, 张成江, 修淑芝. 2001. 玄武岩类形成大地构造环境的Th/Hf-Ta/Hf图解判别[J]. 岩石学报, 17(3): 413-421.
王德磁. 2004. 华南花岗岩研究的回顾与展望[J]. 高校地质学报, 10(3): 305-314. DOI:10.3969/j.issn.1006-7493.2004.03.001
王德滋, 赵广涛, 邱检生. 1995. 中国东部晚中生代A型花岗岩的构造制约[J]. 高校地质学报, 1(2): 13-21.
王德滋, 周新民. 2002. 中国东南部晚中生代花岗质火山-侵入杂岩与地壳演化[M]. 北京: 科学出版社, 1-295.
邢光福, 陈荣, 杨祝良, 周宇章, 李龙明, 姜杨, 陈志洪. 2009. 东南沿海晚白垩世火山岩浆活动特征及其构造背景[J]. 岩石学报, 25(01): 77-89.
张旗. 2013. 中国东部中生代岩浆活动与太平洋板块向西俯冲有关吗?[J]. 岩石矿物学杂志, 32(1): 113-128. DOI:10.3969/j.issn.1000-6524.2013.01.010
郑永飞. 2008. 超高压变质与大陆碰撞研究进展:以大别-苏鲁造山带为例[J]. 科学通报, 53(18): 2129-215. DOI:10.3321/j.issn:0023-074X.2008.18.001