文章快速检索    
 
  中国地质 2021, Vol. 48 Issue (1): 247-263  
0
引用本文
杨朝磊, 邹滔, 祝新友, 杨尚松, 蒋昊原, 袁伟恒, 彭伟刚, 柳玉龙, 马一奇. 2021. 内蒙古莫古吐花岗岩年代学、地球化学与地壳伸展-减薄作用[J]. 中国地质, 48(1): 247-263.  
Yang Chaolei, Zou Tao, Zhu Xinyou, Yang Shangsong, Jiang Haoyuan, Yuan Weiheng, Peng Weigang, Liu Yulong, Ma Yiqi. 2021. Chronology and geochemistry of Mogutu granite in Inner Mongolia and its effect of crustal extension and thinning[J]. Geology in China, 48(1): 247-263. (in Chinese with English abstract).  

内蒙古莫古吐花岗岩年代学、地球化学与地壳伸展-减薄作用
杨朝磊1,2,3, 邹滔2, 祝新友2, 杨尚松3, 蒋昊原4, 袁伟恒4, 彭伟刚5, 柳玉龙6, 马一奇1    
1. 中国人民武装警察部队黄金第十支队, 云南 昆明 650100;
2. 北京矿产地质研究院, 北京 100012;
3. 成都电子科技大学, 四川 成都 611731;
4. 中国地质大学(北京)地球科学与资源学院, 北京 100083;
5. 内蒙古地质勘查有限责任公司, 内蒙古 呼和浩特 010000;
6. 中色地科矿产勘查股份有限公司, 北京 100012
摘要:莫古吐花岗岩体位于大兴安岭南段黄岗梁-甘珠尔庙锡多金属成矿带西南端,其岩性主要以黑云母钾长花岗岩为主。文章通过LA-ICP-MS锆石U-Pb定年及岩石地球化学研究分析,探讨莫古吐花岗岩的成因类型、岩浆源区及成岩构造背景。锆石U-Pb年代学研究表明,莫古吐岩体形成于148.8~152.7 Ma,属晚侏罗世岩浆产物。岩石学及地球化学特征显示,莫古吐花岗岩属于碱性-弱过铝质系列,具有富SiO2(73.64%~80.86%),富K2O(2.6%~6.0%),贫Al2O3(10.57%~13.88%)的特点,富集Rb、U、Th等大离子亲石元素,亏损P、Ti、Ba、Sr等元素,稀土配分型式呈燕式分布,δEu值为0.10~0.27,负Eu异常明显,锆石饱和温度较高,为795~911℃,属于高演化A型花岗岩。结合年代学、地球化学数据及前人研究成果,认为莫古吐花岗岩体的岩浆源区较浅,成岩物质主要以壳源物质为主,岩体形成于地壳伸展-减薄的构造环境中,与蒙古-鄂霍茨克洋构造体制的关系更为密切。
关键词A型花岗岩    锆石U-Pb年龄    伸展构造环境    地质调查工程    大兴安岭南段    内蒙古    
中图分类号:P597;P588.12+1            文献标志码:A             文章编号:1000-3657(2021)01-0247-16
Chronology and geochemistry of Mogutu granite in Inner Mongolia and its effect of crustal extension and thinning
YANG Chaolei1,2,3, ZOU Tao2, ZHU Xinyou2, YANG Shangsong3, JIANG Haoyuan4, YUAN Weiheng4, PENG Weigang5, LIU Yulong6, MA Yiqi1    
1. NO. 10 Gold Geological Party of PAP, Kunming 650100, Yunnan, China;
2. Beijing Institute of Geology for Mineral Resources, Beijing 100012, China;
3. University of Electronic Science and Technology of China, Chengdu 611731, Sichuan China;
4. School of Earch Science and Resources, China University of Geosciences(Beijing), Beijing 100083, China;
5. The Geology of Inner Mongolia Co., Ltd, Hohhot, Hohhot 010000, Inner Mongolia, China;
6. Sinotech Minerals Exploration Co., Ltd, Beijing 100012, China
Abstract: The Mogutu granite pluton is emplaced in the southwest Huanggangliang to Ganzhuermiao tin-polymetal metallogenic belt in Southern Da Hinggan Mountains, which is mainly composed of biotite moyite. The genetic type, magmatic source region and diagenetic tectonic setting of the Mogutugranite were studied by U-Pb dating of zircon in LA-ICP-MS and petrogeochemical analysis. Zircon LA-ICP-MS dating of the biotite moyite yields a concordant age of 148.8-152.7Ma, which means that the Mogutu granite pluton was formed in Late Jurassic. The Mogutu granites is characterized by weak peraluminous and alkaline, high content of SiO2 (73.64%-80.86%), K2O(2.6%-6.0%), but low content of Al2O3 (10.57%-13.88%), depletion in P、Ti、Ba、Sr, and enrichment Rb、U、Th. The chondrite-normalized patterns of REE are in seagull forms, with strong negative Eu anomalies, with 0.10 to 0.27 of δEu, and higher zircon saturation temperatures(795-911℃), which indicates that the Mogutu pluton is similar to A-type granite. Therefore, the Moguto granites shows highly fractionated A -type granite affinity. Based on the previous research results, it is inferred that the depth of magma source of Mogutu granite pluton is shallow, the magmatic substance was derived from the crust, and the granite pluton was emplaced in the tectonic setting of crustal extension and thinning more likely related to the closure of the Mongol-Okhotsk tectonic belt.
Key words: A -type granite    zircon U-Pb age    extensional environment    geological survey engineering    Southern Da Hinggan Mountains    Inner Mongolia    

1 引言

大兴安岭南段是中国北方重要的锡多金属成矿集中区,地处古亚洲洋成矿域与环太平洋成矿域叠加部位(王京彬等, 2005; Zeng et al., 2013, 2015),成矿地质条件优越,分布有众多晚中生代的有色金属、贵金属矿床,规模较大的如白音诺尔铅锌矿、黄岗梁锡铁矿、拜仁达坝铅锌银矿、大井子锡铜矿等。区域内中生代花岗岩类广泛分布,这些花岗岩作为中国东部构造岩浆事件的直接产物,与中生代大规模内生成矿作用之间有着十分密切的关系(毛景文等, 2003, 2005, 2013; 陈志广等,2008)。时空特征显示,大兴安岭南段不仅存在着一批与锡多金属矿成矿时间(130~140 Ma)一致的花岗岩(Ouyang et al., 2013; 王春女等, 2016),而且随着矿床研究工作的不断深入,研究者们总体认为本区锡多金属矿的形成与燕山期的高演化花岗岩侵入体有关(刘建明等, 2004; Zeng et al., 2010; 程细音等, 2017)。尤其对于一些大型的锡多金属矿床而言,高演化花岗岩就是成矿岩体,其成岩过程不仅为矿床形成提供了足够的热源,同时,其从深部所携带的各类成矿元素也是矿床形成所必须的矿源物质的一部分,如黄岗梁锡铁矿床(王莉娟等, 2001; 刘智等, 2012, 2013)、维拉斯托锡多金属矿床(江思宏等, 2010; 祝新友等, 2016)等。因此,查明与锡矿化有关的花岗岩的演化特征、成因类型及其与锡矿化的关系,对于该地区锡多金属矿产的勘查工作就显得尤为重要。

莫古吐花岗岩体位于大兴安岭南段黄岗梁—甘珠尔庙锡多金属成矿带西南端,岩体周围发育有大莫古吐铁锡矿、小莫古吐铁锌矿、银洞子铅锌矿等矿床,对该岩体前人开展了不同程度的研究工作,但大都集中于周围矿床的地质特征与矿床成因方面,而对于岩体年代学、地球化学特征等方面的研究目前尚属空白。鉴于此,本文选择该岩体作为研究对象,通过LA −ICP−MS锆石U−Pb定年、岩石学及地球化学研究分析,探讨莫古吐花岗岩的岩石成因类型、岩浆源区及成岩构造背景,从而为大兴安岭南段中生代花岗岩的成因机制、成岩地球动力学因素及成矿作用研究提供更直接的信息与线索。

2 地质背景

本区位于大兴安岭南段晚古生代增生造山带中,其南北边界分别为西拉木伦断裂和贺根山断裂,向东以嫩江断裂为界,向西没有截然的边界(图 1a)(Wu et al., 2011)。区域内断裂构造发育,主要以NE向断裂以及次一级的NW向、EW向断裂为主,不同断裂相互交错,构成格子状构造系统,对控岩、控矿有着十分重要的意义(任耀武,1995)。研究区内出露地层主要包括上侏罗统满克头鄂博组(晶屑凝灰岩、凝灰质角砾岩)、中侏罗统新民组(粉砂岩、细砂岩、砂砾岩)、上二叠统林西组(粉砂岩、板岩)及中二叠统哲斯组(变质粉砂岩、钙质砂岩、大理岩、硅质岩、粉砂质板岩)、大石寨组(安山岩、细碧岩)等(图 1b)。侵入岩则主要为燕山期花岗岩,岩性以黑云母花岗岩、黑云母二长花岗岩、黑云母钾长花岗岩及花岗斑岩等为主。

图 1 中国东北区域构造单元划分(a,据Wu et al., 2011)、莫古吐地区区域地质图(b,据项目组内部资料修编) 1—满克头鄂博组晶屑凝灰岩、凝灰质角砾岩;2—新民组粉砂岩、细砂岩、砂砾岩;3—林西组粉砂岩、板岩;4—哲斯组变质粉砂岩、钙质砂岩、大理岩、硅质岩、粉砂质板岩;5—大石寨组安山岩、细碧岩;6—辉长岩;7—流纹斑岩;8—闪长岩;9—花岗斑岩;10—黑云母二长花岗岩;11—黑云母花岗岩;12—黑云母钾长花岗岩;13—整合接触;14—断裂及编号(F1—蒙古—鄂霍茨克断裂;F2—德尔布干断裂;F3—贺根山断裂;F4—西拉木伦断裂;F5—康保—赤峰断裂;F6—嫩江八里罕断裂;F7—佳木斯—伊通断裂);15—金属矿床;16—采样位置;17—研究区 Fig. 1 Tectonic subdivisions of northeastern China(a, after Wu et al., 2011); Regional geological map of the Mogutu area (b, after internal materials) 1- Crystal tuff and tuffaceous breccia of the Manketouerbo Formation; 2- Siltstone, fine sandstone and glutenite of the Xinmin Formation; 3- Siltstone and slate of the Linxi Formation; 4- Metamorphic siltstone, calcareous sandstone, marble, siliceous and silty slate of the Zhesi Formation; 5- Andesite and spilite of the Dashizhai Formation; 6- Gabbro; 7- Rhyolite porphyry; 8- Diorite; 9- Granite porphyry; 10- Biotite adamellite; 11- Biotite- granite; 12- Biotite moyite; 13- Conformity; 14- Fracture and No. (F1- Mongolia Okhotsk fracture; F2- Deerbugan fracture; F3- Hegenshan fracture; F4 − Xilamulun fracture; F5- Kangbao- Chifeng fracture; F6- Nengjiang- Balihan fracture; F7-Jiamusi—Yitong fracture); 15-Ore deposit; 16-Sampling position; 17-Researched area
3 岩体地质及岩石学特征

莫古吐岩体受断裂构造控制明显,整体沿NE向展布,长5000 m,宽2000 m,面积大于15 km2,岩性主要为黑云母钾长花岗岩,岩体内岩脉较发育,以细粒花岗岩脉及花岗斑岩脉为主,脉宽一般5~10 m,延长100~250 m。岩体中的黑云母钾长花岗岩呈浅肉红色—灰白色(图 2ab),中细粒花岗结构,块状构造,主要矿物成分以钾长石为主,次为石英、斜长石以及少量黑云母(图 3ab),其中石英以无色透明为主,少量烟灰色(图 2c),粒度0.5~4 mm,含量30%,呈他形粒状充填在其他矿物之间;钾长石主要为正长石和微斜长石(图 3cd),手标本下浅肉红色—肉红色,半自形板柱状,粒度一般为2~4 mm,个别可达8~10 mm,含量45%,镜下因泥化现象而表面浑浊,常常交代熔蚀斜长石(图 3d),形成条纹长石(图 3ab);斜长石主要为钠长石,灰白色,呈半自形—自形短柱状,粒度主要集中在2~4 mm,含量20%,在镜下表面大多浑浊,具卡钠复合双晶(图 3d),部分长石绢云母化,可见绢云母呈斜长石假象出现(图 3e);黑云母,呈黑褐色,有褪色现象,以自形鳞片状为主,局部呈团块状发育(图 2d),片径0.5~2 mm,含量5%,部分黑云母发生绿泥石化蚀变并析出铁质,形成磁铁矿(图 3f),岩石中副矿物主要包括锆石、磁铁矿等,主要蚀变为高岭土化、绢云母化及绿泥石化。莫古吐花岗岩中还常见到伟晶结构(图 2e)及晶洞构造(图 2f)等现象发育,晶洞内有萤石(图 2g)、电气石(图 2h)等矿物出现。

图 2 莫古吐花岗岩野外照片 a—浅肉红色黑云母钾长花岗岩;b—灰白色黑云母钾长花岗岩;c—烟灰色石英;d—团块状黑云母;e—伟晶结构;f—晶洞构造;g—萤石;h—电气石 Fig. 2 Photographs of Mogutu granite a-Yellowish pink biotite moyite; b-Gray biotite moyite; c-Smoky quartz; d-Biotite briquettes; e-Pegmatitic texture; f-Miarolitic strecture; g-Fluorite; h-Tourmaline
图 3 莫古吐花岗岩显微镜下照片 a—浅肉红色黑云母钾长花岗岩正交偏光镜下照片(+);b—灰白色黑云母钾长花岗岩正交偏光镜下照片(+);c—正长石的卡氏双晶(+);d—微斜长石交代溶蚀斜长石及斜长石发育卡钠复合双晶(+);e—绢云母呈斜长石假象发育(+);f—黑云母绿泥石化,并析出磁铁矿(−);Qz—石英;Bi—黑云母;Pl—斜长石;Kf—钾长石;Pth—条纹长石;Mt—磁铁矿;Ser—绢云母化;(+)—正交偏光;(−)—单偏光 Fig. 3 Microphotographs of Mogutu granite a- Yellowish pink biotite moyite; b- Gray biotite moyite; c- Carlsbad twin law of orthoclase; d- Plagioclase was absorbed by the microcline and carlsbadal bite compound twin of plagioclase; e- Sericite appears to develop in the illusion of plagioclase; f- Magnetite precipitation of biotite mainly results from epidotization; Qz-Quartz; Bi-Bitite; Pl-Plagioclase; Kf-K-feldspar; Pth-Perthite; Mt-Magnetite; Ser-Sericitization; (−)-Plane polarization; (+)-Orthogonal polarization
4 样品采集及分析方法

在莫古吐岩体中采集黑云母钾长花岗岩样品11件,其中年代学样品2件,地球化学样品9件,样品新鲜,在手标本及镜下观察显示蚀变微弱,具体采样位置见图 1b。岩体中黑云母钾长花岗岩的颜色存在一定变化(灰白色→浅肉红色),但在野外地质调查过程中,未发现不同颜色花岗岩相互侵入或穿插的有关证据,镜下鉴定结果显示浅肉红色花岗岩和灰白色花岗岩二者的矿物成分相同,岩性均为黑云母钾长花岗岩(图 3ab),笔者认为岩石颜色的差别可能与莫古吐岩体不同位置的风化程度、剥蚀深度及蚀变有关,因此,本文在划分样品时将它们归为同一种花岗岩。

锆石单矿物的分选、制靶及阴极发光(CL)照相在北京锆年领航科技有限公司进行,将采集的原岩样品粉碎,按照常规重力及磁选方法分选后,在双目镜下根据锆石的颜色、自形程度、形态等特征进行初步分类,最后挑选出具有代表性的锆石。UPb同位素定年及微量元素含量测试在合肥工业大学资源与环境工程学院矿床成因与勘查技术研究中心(OEDC)矿物微区分析实验室用LA-ICP-MS完成。激光为Photon Machine公司的Analyte HE (激光源为相干公司的Compex102F),ICP-MS为Agilent 7900。对分析数据的离线处理(包括对样品和空白信号的选择、灵敏度漂移校正和元素含量分析)采用软件ICP-MS DataCal完成。锆石微量元素含量利用NIST 610作为外标、Si作内标的方法进行定量计算,U-Pb同位素定年中采用锆石标准91500作外标进行同位素分馏校正,每分析5个样品点,分析2次91500。分析期间,用GJ-1作为质量监控样,样品的U-Pb年龄谐和图绘制和年龄权重平均计算均采用Isoplot完成。

样品的主微量及稀土元素的分析测试在廊坊市中铁物探勘察有限公司完成,主量元素测试仪器为ARL Advant XP型的X射线荧光光谱仪,测试依据参照GB/T14506.14-2010硅酸盐岩石化学分析方法及GB/T 14506.28-2010硅酸盐岩石化学分析方法完成,实验过程中温度20℃,相对湿度10%,测试相对标准偏差<3%。微量元素及稀土元素测试仪器为X-SERIES-2-ICP-MS电感耦合等离子体质谱仪,测试依据参照GB/T 14506.30-2010硅酸盐岩石化学分析方法完成,实验过程中温度20℃,相对湿度10%,测试相对标准偏差<5%。

5 分析结果 5.1 花岗岩年代学

利用LA-ICP-MS对GMGT-3、GMGT-4两件黑云母钾长花岗岩样品进行锆石U-Pb定年实验。CL图像显示(图 4),莫古吐岩体花岗岩中的多数锆石颗粒晶形较好,呈自形—半自形的长柱状,长轴粒径为160~360 μm不等,长宽比为1:1~1:4,部分锆石晶棱及锥顶被溶蚀,锆石颗粒震荡环带清晰,锆石中的Th(178.0×10-6~2431.0×10-6)、U(368.0× 10-6~6448.0×10-6)比值为0.24~0.49,均大于0.1,为岩浆成因锆石(Hoskin and Black, 2000)。对2件样品共进行了19个点的分析测试,具体测试分析结果见表 1

图 4 莫古吐花岗岩体锆石阴极发光图(CL)图像及测试位置 Fig. 4 Cathodoluminescence images of representative zircons and measuring positions of the Mogutu granite pluton
表 1 莫古吐花岗岩LA−ICP−MS锆石U−Pb分析数据 Table 1 LA−ICP−MS zircon U−Pb age of the Mogutu granite

样品GMGT-3的12个测试点206Pb/238U年龄变化范围为148~150 Ma,Th/U比值为0.24~0.49,平均值0.33。样品GMGT-4的7个测试点206Pb/238U年龄变化范围为151~153 Ma,Th/U比值为0.31~0.49,平均值0.39。在U−Pb谐和图中2件样品的有效点投影均在谐和线或附近(图 5),谐和度较好,应为同期岩浆事件的产物;样品GMGT-3 206Pb/238U的加权平均年龄为(148.8±1.1) Ma,样品GMGT-4 206Pb/238U的加权平均年龄为(152.7±1.5) Ma。锆石U-Pb年代学研究表明,莫古吐岩体年龄值应为148.8~152.7 Ma,属于中生代晚侏罗世岩浆产物。

图 5 莫古吐花岗岩体锆石U−Pb谐和图 Fig. 5 Zircon U-Pb age and its concordia diagram of the Mogutu granite body
5.2 岩石地球化学 5.2.1 主量元素

从主、微量元素分析结果(表 2)可以看出,莫古吐岩体具有富硅、钾,贫铝、钠、钙、铁、镁的特点,SiO2变化于73.64%~80.86%,显示出硅过饱和的特征,属于酸性岩,在TAS图解中(图 6),莫古吐岩体数据投点全部落入花岗岩范围内,与岩相学特征一致。样品全碱(ALK)质量分数值较高,为6.93~ 9.25,Al2O3含量相对较低(10.57%~13.88%),碱度率AR值为2.39~5.40,里特曼指数σ为1.34~2.66,在SiO2−AR图解中,样品投点多数落入碱性岩石系列区域中(图 7a)。岩石A/CNK为1.00~1.11,平均1.07,在A/CNK−A/NK图解中,莫古吐花岗岩主要位于过铝质区间内(图 7b)。综上认为岩体中的黑云母钾长花岗岩应属于富SiO2的碱性—弱过铝质花岗岩。

表 2 莫古吐花岗岩体主量元素(%)和微量元素(10−6)组成 Table 2 Major element (%) and trace element (10−6) composition of the Mogutu granite
图 6 莫古吐花岗岩TAS分类图解(据Middlemost, 1994 Fig. 6 TAS diagram of the Mogutu granite(after Middlemost, 1994)
图 7 莫古吐花岗岩SiO2−AR岩石系列判别图(据Rickwood, 1989)和A/CNK−ANK图解(据Maniar and Piccoli, 1989 Fig. 7 SiO2−AR discriminant diagram (after Rickwood, 1989) and A/CNK−ANK Diagram (after Maniar and Piccoli, 1989) of the granite
5.2.2 稀土元素

莫古吐岩体花岗岩的稀土元素特征主要表现为,ΣREE=112.56×10-6~281.69×10-6,LREE/HREE变化较小,范围为3.73~8.57,(La/Yb)N值变化范围为3.37~8.15,属于轻稀土富集型,LREE的总量与ΣREE呈同消长关系,HREE总量则变化较小,表明岩体的ΣREE差别主要是LREE引起的。花岗岩的稀土元素球粒陨石标准化配分曲线呈燕式分布(图 8a),Eu亏损强烈,δEu值为0.10~0.27,推测在成岩过程中,岩浆可能经历了斜长石分离结晶作用,δCe值为0.66~1.02,稀土元素配分型式表现出与典型A型花岗岩类似的的特征(Joseph et al., 1987; 张旗等, 2012, 2013)。

图 8 莫古吐花岗岩稀土元素球粒陨石分布型式图(a)及微量元素原始地幔标准化蜘蛛图(b) (标准化数据据文献Sun and Mcdonough, 1989) Fig. 8 Chondrite-normalized REE pattern(a) and primitive mantle-normalized spider diagram(b)of the Mogutu granite (chondrite and primitive mantle normalized values after reference Sun and Mcdonough, 1989)
5.2.3 微量元素

微量元素中,Rb(173.0×10-6~465.0×10-6)、Yb(2.9×10-6~6.1×10-6)含量较高,Sr(25.5×10-6~116.0× 10-6)、Ba(48.0×10-6~334.0×10-6)含量低。高场强元素Nb(13.0×10-6~33.6×10-6)、Zr(54.3×10-6~177.0× 10-6)、Hf(3.2×10-6~7.1×10-6)、Ta(1.8×10-6~3.8×10-6)含量均偏低,Nb/Ta比值6.2~9.2,低于幔源岩浆Nb/ Ta=17±1比值(汪洋,2009)。放射性热元素U(3.3× 10-6~10.4×10-6)、Th(27.1×10-6~57.8×10-6)、Pb(17.3× 10-6~42.8×10-6)含量高,Th/U比值3.2~10.1。Rb/Sr(1.5~12.8)、Rb/Ba(0.7~3.6)比值变化范围不大,Y/ Nb(1.0~3.3)、Ce/Nb(2.0~5.8)比值均偏低。微量元素原始地幔标准化蜘蛛图(图 8b)显示,莫古吐岩体富集Rb、Th、U等元素,贫Sr、Ba、K、P和Ti等元素。

6 讨论 6.1 花岗岩成因类型

高演化(分异)花岗岩指的是岩浆经过强烈结晶分异作用形成的花岗岩,该类岩石暗色矿物含量较低,如浅色花岗岩、白岗岩等。随着岩浆向后期演化,岩浆中的挥发份如H2O、Li、Cl、F、B等成分会高度富集,因此高度演化的花岗岩中通常可见到锂云母、萤石、电气石、黄玉等矿物(吴福元等,2017)。莫古吐花岗岩发育伟晶结构及晶洞构造,晶洞内有萤石、电气石等矿物出现,与高演化花岗岩特征相同(Dill,2015; 吴福元等,2017)。花岗岩样品中的强不相容元素Rb高度富集,表明岩体的成岩岩浆经历了高度的分异演化。在Rb−Sr−Ba图解中(图 9),除个别样品外,莫古吐岩体的其余样品均在高分异花岗岩区域内,由此,本文认为莫古吐花岗岩应属于一种高演化花岗岩。

图 9 莫古吐花岗岩Rb−Sr−Ba图解(据Müller and Groves, 2001 Fig. 9 Rb−Sr−Ba triangular diagram of the Mogutu granite (after Müller and Groves, 2001)

莫古吐花岗岩主量元素显示富硅(SiO2= 73.64% ~80.86%)、富钾(K2O=2.6% ~6.0%)、贫铝(Al2O3=10.57%~13.88%)的特点,稀土元素球粒陨石标准化配分曲线呈燕式分布,负Eu异常明显(δEu=0.10~0.27),在微量元素中富集U、Th、Rb等大离子亲石元素,亏损P、Ti、Ba、Sr等元素,这些特征使得莫古吐花岗岩既显示A型花岗岩特点,同时又具有I型花岗岩的特征,因此,莫古吐花岗岩的成因类型便成为一个值得讨论的问题。目前,关于花岗岩成因类型的分类,多数研究者通常采用MISA的分类方案,即根据花岗岩的地球化学特征、源区性质及形成构造背景等将其分为M(mantle-derived)型、I(in-fracrustal或igneous)型、S(supracrustal)型和A(alkaline、anorogenic、anhydrous)型4种(吴福元等,2007)。传统意义的A型花岗岩被认为是碱性、无水、非造山的花岗岩(Loiselle and Wones, 1979),岩石中含有碱性暗色矿物(如钠闪石−钠铁闪石、霓石−霓辉石、铁橄榄石等)是判别该类花岗岩的一个重要矿物学标志,I型花岗岩则以岩石中出现角闪石,标准矿物刚玉 < 1%等为特征(Chappell and White, 1974; 吴福元等,2007)。而当A型或者I型这两类花岗岩经历高度的分异结晶作用之后,二者的矿物组成和化学成分会趋近于低共结的花岗岩,地球化学特征变得十分相似,因此无法通过标志性矿物来对它们进行有效识别。在岩石类型上,碱长花岗岩、钾长花岗岩、石英正长岩及紫苏花岗岩等多种碱性花岗岩均属于A型花岗岩,该类花岗岩不仅包括了碱性岩类,还扩大到钙碱性、弱碱−准铝、弱过铝甚至强过铝质岩石(许保良等,1998),甚至一些高分异的I型或S型花岗岩也属于A型花岗岩,因此,A型花岗岩的判别一直颇具争议。对此,张旗等(2012)在综合前人研究成果的基础上指出,典型A型花岗岩最主要的地球化学特征是富K2O(4%~ 6%或更高)、富SiO2(通常>70%,多数>75%)、贫Al2O3(一般12%~13%)、Sr、Ba、Eu、Ti和P,REE分布具明显的负Eu异常(以δEu<0.3为标志)等,这些特征是当前判别A型花岗岩最直接有效的标志。

从前文可知,莫古吐花岗岩样品的主微量元素特征与上述A型花岗岩特征有着相同的特点。目前,多数学者普遍认为A型花岗岩形成温度较高,通常>800℃(King et al., 1997贾小辉等,2009),莫古吐岩体锆石的CL图像(图 4)中未发现任何继承锆石,花岗岩锆石的饱和温度(TZr)为795~911℃,平均842℃,明显高于I型花岗岩的平均温度764℃(King et al., 1997),而与A型花岗岩的平均温度833℃(刘昌实等,2003)更为接近;在花岗岩成因类型判别图解中(图 10),岩石样品数据的投点也均位于A型花岗岩区域内,由此,判断莫古吐花岗岩不属于I型花岗岩,而属于A型花岗岩。典型的A型花岗岩因富碱性而有着较高的Zr、Ce、Nb和Y含量,但经过强结晶分异作用后,岩石中Zr的含量往往就会变低,甚至低至100.0×10-6左右(King et al., 2001)。莫古吐花岗岩样品中的Zr、Hf、Nb等高场强元素含量均较低,其中Zr含量为54.3 × 10-6~ 177.0×10-6,多数<100.0×10-6,进一步表明岩体中的黑云母钾长花岗岩应属于高分异花岗岩。综上所述,笔者认为莫古吐花岗岩是岩浆经过强结晶分异作用后形成的高演化A型花岗岩。

图 10 104×Ga/Al−(Na2O+K2O)图解(a)与104×Ga/Al−Zr图解(b)(底图据Joseph et al., 1987) Fig. 10 104×Ga/Al−(Na2O+K2O) diagram(a) and 104×Ga/Al−Zr diagram of the Mogutu granite(b)(after Joseph et al., 1987)
6.2 岩浆源区

研究资料显示大兴安岭地区花岗岩的成岩物质来源一般较浅(蔡剑辉等,2006),岩浆源区主要为起源于地幔的年轻地壳物质组成(高源等,2013)。莫古吐花岗岩属于典型的A型花岗岩,是花岗岩中形成深度最浅的(张旗等,2012)。该类花岗岩的形成可能与幔源岩浆的底侵促使下地壳物质发生部分熔融的作用有关(Wu et al., 2002; Tapani Rämö et al., 2003)。微量元素原始地幔标准化蜘蛛图显示莫古吐花岗岩亏损P、Ti、Sr等元素,这些元素的贫化被认为是岩浆源于地壳物质的指示剂。Ti作为高场强元素,因不易进入熔体而残留在岩浆源区,因此,岩体中花岗岩元素Ti的亏损表明其成岩岩浆可能有壳源物质的参与或者直接来源于下地壳(Harris et al., 1992)。莫古吐花岗岩具有低Sr及负Eu异常的地球化学特征,这些特征被认为是岩体成岩物质来源于较浅岩浆源区的主要标志(蔡剑辉等,2006)。在花岗岩δEu−La/Yb图解中(图 11),莫古吐岩体样品的投点均位于壳源区域,表明岩体的成岩物质来源主要以壳源为主。根据上述讨论,结合前人研究成果,本文认为莫古吐花岗岩体的岩浆源区较浅,其成岩物质应主要以壳源物质为主。

图 11 莫古吐花岗岩δEu−La/Yb图解(底图据文献Joseph et al., 1987) Fig. 11 δEu−La/Yb diagram of the Mogutu granite (after reference Joseph et al., 1987)
6.3 构造背景探讨

A型花岗岩的实质是在低压条件下部分熔融形成的花岗岩类,大多产于地壳伸展—减薄的构造背景中(张旗等,2012),将其进一步分为A1、A2两个亚类(Eby, 1990, 1992),其中A1型花岗岩形成于非造山环境,A2型花岗岩形成于造山后环境。莫古吐花岗岩Sr、Yb含量分别为25.5×10-6~116.0×10-6、2.9×10-6~6.1×10-6,与“南岭型”花岗岩(Sr<100.0× 10-6,Yb>2.0×10-6)特征相同,属于低Sr高Yb类型的造山后花岗岩(张旗等, 2006, 2008),在Nb−Ce−Y构造环境判别图解中(图 12),花岗岩样品的投点均在A2型花岗岩区域内,表明莫古吐花岗岩应属于A2型造山后花岗岩。不同学者通过对大兴安岭地区的火山岩及构造-岩浆事件进行深入研究后指出,中生代时期,该地区主要处于伸展的构造环境中(王彦斌等,2010; Wang et al., 2011; 许文良等,2013; 龙舟等,2017),这与形成A2型花岗岩的造山后伸展环境(张旗等,2008)相一致,因此,本文认为莫古吐岩体的成岩构造环境应属于伸展环境,在该环境下地壳处于伸展—减薄的状态。

图 12 莫古吐花岗岩Nb−Ce−Y构造环境判别图解(底图据文献Pearce et al., 1984 A1—非造山花岗岩;A2—造山后花岗岩 Fig. 12 Nb−Ce−Y discrimination diagram of tectonic setting of the Mogutu granite(after reference Pearce et al., 1984) A1-anorogenic granite; A2-post-orogenic granite

目前,与赤峰北部地区早白垩—晚侏罗世花岗岩形成有关的地球动力学因素主要有3种观点:第一种是与地幔柱或板内作用有关(林强等,2004; 邵济安等,2010);第二种是与古太平洋俯冲作用有关(Zhang et al., 2010; Guo et al., 2015);第三种则是与蒙古—鄂霍茨克洋闭合所导致的碰撞后伸展作用有关(Fan et al., 2003; Ying, 2010; 顾玉超等,2017)。对于第一种观点,前人曾指出由于该地区地幔柱活动时间较短且远小于岩浆活动的持续时间(Wang et al., 2006),同时还缺少地幔柱活动的特征性岩石(辉长岩、玄武岩),因此该地区早白垩—晚侏罗世的花岗岩不可能与地幔柱活动有关;而古太平洋板块的俯冲作用在白垩世中晚期—古近纪才开始对中国东北部地区产生影响(李锦轶等,2004),同时,板块真正俯冲的时间只有125~110 Ma及43~0 Ma两个阶段,其作用对中国东北部地区中生代岩浆活动的影响十分有限(张旗,2013)。近年来,蒙古—鄂霍茨克洋的闭合作用对中国东北地区地质演化作用的影响越来越受到关注,研究者认为由蒙古—鄂霍茨克洋闭合所引起的造山带碰撞作用一直持续到晚侏罗世晚期才结束(佘宏全等,2012; 黄始琪等,2014),之后的碰撞伸展是导致大兴安岭地区地壳伸展—减薄的主因(Wang et al., 2011),中生代中晚侏罗世至早白垩世早期(170~ 135 Ma)的大规模成岩成矿事件也与蒙古—鄂霍茨克洋闭合导致的加厚陆壳拆沉作用及其相对应的碰撞后伸展背景有关(张雪冰,2017)。

研究资料显示,大兴安岭中南段地区的侵入岩年龄具有自西向东逐渐变年轻的趋势(Meng,2003),这与蒙古—鄂霍茨克洋自西向东的剪刀式闭合特征相同(李鹏川等,2016),而该地区的火山活动也显示出相似的特征(Wang et al., 2006)。在时间上,莫古吐花岗岩形成于晚侏罗世(148.8~ 152.7 Ma),岩体成岩作用远在古太平洋板块俯冲作用之前就已发生;在空间上,中生代时期古太平洋板块俯冲作用的影响达不到大兴安岭地区(Shao et al., 2000邵济安等, 2001, 2015)。张旗等(2009)也认为中国东部燕山期的大规模岩浆活动与古太平洋板块俯冲作用无关。区域内的一些中生代花岗岩体,如胡都格绍荣岩体((129.9±1.4)Ma;李鹏川等,2016)、桦杆子沟岩体(136.6~137.34 Ma;彭青松等,2017)、土木富洲岩体((154 ± 1) Ma;杨奇荻等,2014)、杜尔基岩体((148.2±1.0)Ma;高飞等,2018)等,研究者认为这些岩体的形成都与蒙古—鄂霍茨克洋闭合作用有着密切的关系。综合前人研究成果,结合岩体成岩构造环境,本文认为蒙古—鄂霍茨克洋闭合碰撞后伸展作用是形成莫古吐岩体的主要地球动力学因素,其成岩过程可能为:在蒙古—鄂霍茨克洋构造体制的影响下,中生代晚期大兴安岭地区的岩石圈处于伸展—减薄状态,导致软流圈隆起,幔源岩浆发生底侵作用,促使上覆地壳发生部分熔融从而形成莫古吐花岗岩。

7 结论

(1)莫古吐黑云母钾长花岗岩锆石U−Pb年龄为(148.8±1.1)~(152.7±1.5)Ma,属于中生代晚侏罗世岩浆产物。

(2)莫古吐花岗岩具有富硅(SiO2=73.64% ~ 80.86%)、富钾(K2O=2.6% ~6.0%)、贫铝(Al2O3= 10.57%~13.88%)的特点,REE型式呈燕式分布,负Eu异常明显(δEu=0.10~0.27),富集U、Th、Rb等大离子亲石元素,亏损P、Ti、Ba、Sr等元素,锆石饱和温度较高,为795~911℃,属于高演化A型花岗岩。

(3)地球化学特征显示,莫古吐花岗岩体的岩浆源区较浅,成岩物质应主要以壳源物质为主。

(4)莫古吐花岗岩属于A2型造山后花岗岩,形成于地壳伸展—减薄的构造环境中,蒙古—鄂霍茨克洋闭合碰撞后伸展作用是形成岩体的主要地球动力学因素。

致谢: 野外地质工作得到北京矿产地质研究院蒋斌斌、管育春等工程师的大力支持和帮助;测试工作得到合肥工业大学矿床成因与勘查技术研究中心矿物微区分析实验室汪方跃老师的热情帮助;审稿专家给论文提出了许多建设性的意见,特此感谢!

参考文献
Cai Jianhui, Yan Guohan, Xu Baoliang, Wang Guanyu, Mu Baolei, Zhao Yongchao. 2006. The late Mesozoic alkaline intrusive rocks at the east foot of the Taihang-Da Hinggan Mountains:Lithogeochemical characteristics and their implication[J]. Acta Geoscientice Sinica, 27(5): 447-459 (in Chinese with English abstract).
Chappell B W, White A J R. 1974. Two contrasting granite types[J]. Pacific Geology, 8(2): 173-174.
Chen Zhiguang, Zhang Lianchang, Wu Huaying, Wang Bo, Zeng Qindong. 2008. Geochemistry study and tectonic background of A style host granite in Nianzigou molybdenum doposit in Xilamulun molybdenum metallogenic belt, Inner Mongolia[J]. Acta Petrologica Sinica, 24(4): 257-267 (in Chinese with English abstract).
Cheng Xiyin, Zhu Xinyou, Liu Zi. 2017. Magmatic evolution and tin polymetallic mineralization of Yanshenian highly fractionated granite in Chifeng, Inner Mongolia[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 36: 142-142 (in Chinese with English abstract).
Dill H G. 2015. Pegmatites and aplites:Their genetic and applied ore geology[J]. Ore Geol. Rev., 69: 417-561. DOI:10.1016/j.oregeorev.2015.02.022
Eby G N. 1990. The A-type granitoids:A review of their occurrence and chemical characteristics and speculations on their petrogenesis[J]. Lithos, 26(1): 115-134.
Eby G N. 1992. Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications[J]. Geology, 20(7): 641. DOI:10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
Fan W M, Guo F, Wang Y J, Lin G. 2003. Late Mesozoic calc-alkaline volcanism of post-orogenic extension in the northern Da Hinggan Mountains, Northeastern China[J]. Journal of Volcanology & Geothermal Research, 121(1): 115-135.
Gao Fei, Liu Yongjiang, Wen Quanbo, Li Weimin, Feng Zhiqiang, Fan Wenliang, Tan Chao. 2018. Zircon U-Pb ages and its geological implication of Mesozoic granites in Tuquan-Keerqin Youyizhongqi region[J]. Journal of Jinlin University(Earth Science Edition), 48(3): 769-783 (in Chinese with English abstract).
Gao Yuan, Zheng Changqing, Yao Wengui, Wang Hao, Li Juan, Shi Lu, Cui Fanghua, Gao Feng, Zhang Xingxing. 2013. Geochemistry and zircon U-Pb geochronology of the Luotuobozi pluton in the Haduohe area in the Northern Daxing'anling[J]. Acta Geologica Sinica, 87(9): 1293-1310 (in Chinese with English abstract).
Gu Yuchao, Chen Renyi, Jia Bin, Yu Chantao, Ju Nan. 2017. Zircon U-Pb dating and geochemistry of the syenogranite from the Bianjiadayuan Pb-Zn-Ag deposit of Mongolia and its tectonic implications[J]. Geology in China, 44(1): 101-117 (in Chinese with English abstract).
Guo F, Li H X, Fan W M, Li J Y, Zhao L, Huang M W, Xu W L. 2015. Early Jurassic subduction of the Paleo-Pacific Ocean in NE China:Petrologic and geochemical evidence from the Tumen mafic intrusive complex[J]. Lithos, 224-225: 46-60. DOI:10.1016/j.lithos.2015.02.014
Harris N B W, Inger S. 1992. Trace element modelling of pelite-derived granites[J]. Contributions to Mineralogy & Petrology, 110(1): 46-56. DOI:10.1007/BF00310881
Hoskin P W O, Black L P. 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology, 18(4): 423-439. DOI:10.1046/j.1525-1314.2000.00266.x
Huang Shiqi, Dong Shuwen, Zhang Fuqin, Miao Laicheng, Zhu Mingshuai. 2014. Tectonic deformation and dynamic characteristics of the middle-part of the Mongolia-Okhotsk Collisional Belt, Mongolia[J]. Acta Geoscientica Sinica, 35(4): 415-424 (in Chinese with English abstract).
Jai Xiaohui, Wang Qiang, Tang Gongjian. 2009. A-type granites:Research progress and implication[J]. Geotectonica et Metallogenia, 33(3): 465-480 (in Chinese with English abstract).
Jiang Sihong, Nie Fengjun, Liu Yifei, Yun Fei. 2010. Sulfur and lead isotopic compositionas of Bairendaba and Weilasituo silver-polymetallic deposits, Inner Mongolia[J]. Mineral and Deposits, 29(1): 101-112 (in Chinese with English abstract).
Joseph B. Whalen, Kenneth L. 1987. Currie, Bruce W. Chappell. A-type granites:geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy & Petrology, 95(4): 407-419.
King P L, Chappell B W, Allen C M, White A J R. 2001. Are A-type granites the high-temperature felsic granites? Evidence from fractionated granites of the Wangrah Suite[J]. Journal of the Geological Society of Australia, 48(4): 501-514.
King P L, White A J R, Chappell B W, Allen C M. 1997. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, southeastern Australia[J]. Journal of Petrology, 38(3): 371-391. DOI:10.1093/petroj/38.3.371
Li Jintie, Mo Shenguo, He Zhengjun, Sun Guihua, Chen Wen. 2004. The timing of crustal sinistral strike-slip movement in the northern Great Khing'an ranges and its constraint on reconstruction of the crustal tectonic evolution of NE China and adjacent areas since the Mesozoic[J]. Earth Science Frontiers, 11(3): 157-168 (in Chinese with English abstract).
Li Pengchuan, Liu Zhengdong, Li Shichao, Xu Zhongyuan, Li Gang, Guan Qingbin. 2016. Geochronology, geochemistry, zircon Hf isotopic characteristics and tectonic setting of Hudugeshaorong Pluton in Balinyouqi, Inner Mongolia[J]. Earth Science, 41(12): 1995-2007 (in Chinese with English abstract).
Lin Qiang, Ge Wenchun, Wu Fuyuan, Sun Deyou, Cao Lin. 2004. Geochemistry of Mesozoic granites in Da Hinggan Ling ranges[J]. Acta Petrologica Sinica, 20(3): 403-412 (in Chinese with English abstract).
Liu Chanshi, Chen Xiaoming, Chen Peiron, Wang Rucheng, Hu Huan. 2003. Subdivision, discrimination criteria and genesis for A-type rock suites[J]. Geological Journal of China Universities, 9(4): 573-591 (in Chinese with English abstract).
Liu Jianming, Zhang Rui, Zhang Qinzhou. 2004. The Regional Metallogeny of Da Hinggan Ling, China[J]. Earth Science Frontires, 11(1): 269-277 (in Chinese with English abstract).
Liu Zhi, Lü Xinbiao, Mei Wei. 2012. Discussion on metallogenic material source of Huanggang Sn-Fe Deposit——Evidence from O -S-Pb isotopic compositions[J]. Mineral Deposits, (S1): 583-584 (in Chinese with English abstract).
Liu Zhi, Lü Xinbiao, Mei Wei. 2013. The isotopic composition of S-Pb-O of Huanggang Sn-Fe Deposit, Inner Mongolia:Implications for the ore-forming material source[J]. Journal of Mineralogy and Petrology, 33(3): 30-37 (in Chinese with English abstract).
Loiselle M C and Wones DR. 1979. Characteristics and origin of anorogenic granites[J]. Geol. Soc. Am. Abstr., 11: 468.
Long Zhou, Lai Lin, Zhang Xuebin, Zhangmingyang, Zhou Changhong. 2017. Zircon U-Pb ages, geochemical characteristics and tectonic significance of the A-type granites in Sunite Youqi, Inner Mongolia[J]. Geology and Exploration, 53(6): 1115-1128 (in Chinese with English abstract).
Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101(5): 635-643. DOI:10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
Mao Jingwen, Zhou Zhenhua, Wu Guang, Jiang Sihong, Liu Chenglin, Li Houmin, Ouyang Hegen, Liu Jun. 2013. Metallogenic regularity and minerogenetic series of ore deposits in Inner Mongolia and adjacent areas[J]. Mineral Deposits, 32(4): 715-729 (in Chinese with English abstract).
Mao Jingweng, Xie Guiqing, Zhang Zuoheng, Li Xiaofeng, Wang Yitian, Zhangchangqing, Li Yongfeng. 2005. Mesozoic large-scale metallogenic pulses in North China and corresponding geodynamic settings[J]. Acta Petrologica Sinica, 21(1): 169-188 (in Chinese with English abstract).
Mao Jingweng, Zhang Zuoheng, Yu Jinjie, Wang Yitian, Niu Baogui. 2003. Geodynamic settings of large-scale metallogenic pulses in Mesozoic in North China and its adjacent areas:Enlightenment from mineralization age about metal deposits[J]. Science in China, 33(4): 289-299 (in Chinese with English abstract).
Meng Q R. 2003. What drove late Mesozoic extension of the northern China-Mongolia tract?[J]. Tectonophysics, 369(3/4): 155-174.
Middlemost E A K. 1994. Naming materials in the magma/igneous rock system[J]. Annual Review of Earth & Planetary Sciences, 37(3/4): 215-224.
Müller D, Groves D I. 2001. Potassic igneous rocks and associated gold-copper mineralization[J]. Mineral Resource Reviews, 56(2/3): 265-266.
Ouyang H G, Mao J W, Santosh M, Zhou J, Zhou Z Z, Wu Y, Hou L. 2013. Geodynamic setting of Mesozoic magmatism in NE China and surrounding regions:Perspectives from spatio-temporal distribution patterns of ore deposits[J]. Journal of Asian Earth Sciences, 78(12): 222-236.
Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Jour. Petrol., 25(4): 956-983. DOI:10.1093/petrology/25.4.956
Peng Qingsong, Zhang Zhiqiang, Zhu Xinyou, Huang Xingkai, Xuqiao. 2017. U-Pb age of zircon mineral in Huaganzigou pluton and its geological significance in central and southern part of the Da Hinggan Mountains[J]. Mineral Exploration, 8(6): 927-936 (in Chinese with English abstract).
Ren Yaowu. 1995. Analysis of regional ore-controlling factors of tin-copper polymetallic ore deposit in the southeast margin of Da Hinggan Ling[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 14(1): 33-34 (in Chinese with English abstract).
Rickwood P C. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos, 22(4): 247-263. DOI:10.1016/0024-4937(89)90028-5
Shao J A, Liu F T, Chen H. 2000. Seismic tomography of the northest Pacific and its geodynamic implications[J]. Progress in Natural Science, 11(1): 46-49.
Shao Ji'an, Liu Futian, Chen Hui, Han Qingjun. 2001. Relationship between Mesozoic Magmatism and Subduction in Da Hinggan-Yanshan Area[J]. Acta Geologica Sinica, 75(1): 56-63 (in Chinese with English abstract).
Shao Ji'an, Mu Baolei, Zhu Huizhong, Zhang Lüqiao. 2010. Material source and tectonic settings of the Mesozoic mineralization of the Da Hinggan Mts[J]. Acta Petrologica Sinica, 26(3): 649-656 (in Chinese with English abstract).
Shao Ji'an, Zhang Lüqiao, Mu Baolei. 2015. Magmatism in the Mesozoic extending orogenic process of Da Hinggan MTS[J]. Earth Science Frontiers, 6(4): 339-346 (in Chinese with English abstract).
She Hongquan, Li Jinwen, Xiang Anping, Guan Jidong, Yang Xuncheng, Zhang Dequan, Tan Gang, Zhang Bin. 2012. U-Pb ages of the zircons from primary rocks in middle-northern Daxinganlin and its implications to geotectonic evolution[J]. Acta Petrologica Sinica, 28(2): 217-240 (in Chinese with English abstract).
Sun S S, Mcdonough W F. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J]. Geological Society London Special Publications, 42(1): 313-345. DOI:10.1144/GSL.SP.1989.042.01.19
Tapani Rämö O, Mclemore V T, Hamilton M A, Kosunen P J, Heizler M, Haapala I. 2003. Intermittent 1630-1220 Ma magmatism in central Mazatzal province:New geochronologic piercing points and some tectonic implications[J]. Geology, 31(4): 335-338. DOI:10.1130/0091-7613(2003)031<0335:IMMICM>2.0.CO;2
Wang Chunnv, Wang Quanming, Yu Xiaofei, Han Zhenzhe. 2016. Metallognetic characteristics of tin and ore-serach prospect in the southern part of Da Hinggan Mountains[J]. Geology and Exploration, 52(2): 220-227 (in Chinese with English abstract).
Wang F, Zhou X H, Zhang L C, Ying J F, Zhang Y T, Wu F Y, Zhu R X. 2006. Late Mesozoic volcanism in the Great Xing'an Range (NE China):Timing and implications for the dynamic setting of NE Asia[J]. Earth & Planetary Science Letters, 251(1): 179-198.
Wang Jingbin, Wang Yuwang, Wang Lijuan. 2005. Tin-polymetallic metallogenic series in the southern part of Da Hinggan mountains China[J]. Geology and Prospecting, 41(6): 15-20 (in Chinese with English abstract).
Wang Lijuan, Hidehiko Shimazaki, Wang Jingbin, Wang Yuwang. 2001. Ore-forming fluid and Mineralization of Huanggang Sn-Fe Deposit, Inner Mongolia[J]. Science in China:Earth Science, 31(7): 553-562 (in Chinese with English abstract).
Wang T, Zheng Y D, Zhang J J, Zeng L S, Donskaya T, Guo Lei, Li J B. 2011. Pattern and kinematic polarity of Late Mesozoic extension in continental NE Asia:Perspectives from metamorphic core complexes[J]. Tectonics, 30(6).
Wang Yanbin, Han Juan, Li Jianbo, OuYang Zhixia, Tong Ying, Hou Kejun. 2010. Age, petrogenesis and geological significance of the deformed granitoids in the Louzidian metamorphic core complex, southern Chifeng, Inner Mongolia:Evidence from zircon U-Pb dates and Hf isotopes[J]. Acta Petrologica et Mineralogica, 29(6): 763-778 (in Chinese with English abstract).
Wang Yang. 2009. Geochemistry of the Baicha A-type granite in Beijing Municipality:Petrogenetic and tectonic implications[J]. Acta Petrologica Sinica, 25(1): 13-24 (in Chinese with English abstract).
Waston E B, Harrison T M. 1983. Zircon saturation revisited:Temperature and composition effects in a variety of crustal magma types[J]. Earth and Planetary Science Letters, 64(2): 295-304. DOI:10.1016/0012-821X(83)90211-X
Wu F Y, Sun D Y, Ge W C, Zhang Y B, Grant M L, Wilde S A, Jahn B M. 2011. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 41(1): 1-30. DOI:10.1016/j.jseaes.2010.11.014
Wu F Y, Sun D Y, Li H, Jahn B M, Wilde S. 2002. A-type granites in northeastern China:Age and geochemical constraints on their petrogenesis[J]. Chemical Geology, 187(1/2): 143-173.
Wu Fuyuan, Li Xianhua, Yang Jinhui, Zheng Yongfei. 2007. Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica, 23(6): 1217-1238 (in Chinese with English abstract).
Wu Fuyuan, Liu Xiaochi, Ji Weiqiang, Wang Jiamin, Yang Lei. 2017. Highly fractionated granites:Recognition and research[J]. Science China:Earth Sciences, 47(7): 745-765 (in Chinese with English abstract).
Xu Baoliang, Yan Guohan, Zhang Chen, Li Zhitong, He Zhongfu. 1989. Petrological subdivision and source material of A-type granites[J]. Earth Science Frontiers, 5(3): 113-124 (in Chinese with English abstract).
Xu Wenliang, Wang Feng, Bei Fuping, Meng En, Tang Jie, Xu Meijun, Wang wei. 2012. Mesozoic tectonic regimes and regional ore-forming background in NE China:Constraints from spatial and temporal variations of Mesozoic volcanic rock assocaitions[J]. Acta Petrological Sinica, 29(2): 339-353 (in Chinese with English abstract).
Yang Qidi, Guo Lei, Wang Tao, Zeng Tao, Zhang Lei, Tong Ying, Shi Xingjun, Zhang Jianjun. 2014. Geochronology, origin, sources and tectonic settings of Late Mesozoic two-stage granites in the Ganzhuermiao region, central and southern Da Hinggan Range, NE China[J]. Acta Petrologica Sinica, 30(7): 1961-1981 (in Chinese with English abstract).
Ying J F, Zhou X H, Zhang L C, Wang F. 2010. Geochronological framework of Mesozoic volcanic rocks in the Great Xing'an Range, NE China, and their geodynamic implications[J]. Journal of Asian Earth Sciences, 39(6): 786-793. DOI:10.1016/j.jseaes.2010.04.035
Zeng Q D, Liu J M, Qin K Z, Fan H G, Chu S X, Wang Y B, Zhou L L. 2013. Types, characteristics, and time-space distribution of molybdenum deposits in China[J]. International Geology Review, 55(11): 1311-1358. DOI:10.1080/00206814.2013.774195
Zeng Q D, Sun Y, Chu S X, Duan X X, Liu J M. 2015. Geochemistry and geochronology of the Dongshanwan porphyry Mo-W deposit, Northeast China:Implications for the Late Jurassic tectonic setting[J]. Journal of Asian Earth Sciences, 97: 472-485. DOI:10.1016/j.jseaes.2014.07.027
Zeng Q, Liu J, Zhang Z. 2010. Re-Os geochronology of porphyry molybdenum deposit in south segment of Da Hinggan Mountains, Northeast China[J]. Journal of Earth Science, 21(4): 392-401. DOI:10.1007/s12583-010-0102-4
Zhang J H, Gao S, Ge W C, Wu F Y, Yang J H, Wilde S A, Li M. 2010. Geochronology of the Mesozoic volcanic rocks in the Great Xing'an Range, northeastern China:Implications for subduction-induced delamination[J]. Chemical Geology, 276(3): 144-165.
Zhang Qi, Jin Weijun, Li Chengdong, Wang Yuanlong. 2009. Yanshanian large-scale magmatism and lithosphere thinning in Eastern China:Relation to large igneous Province[J]. Earth Science Frontiers, 16(2): 21-51 (in Chinese with English abstract).
Zhang Qi, Ran Hao, Li Chengdong. 2012. A-type granite:What is the essence?[J]. Acta Petrologica et Mineralogica, 31(4): 621-626 (in Chinese with English abstract).
Zhang Qi, Wang Yan, Li Chengdong, Wang Yuanlong, Jin Weijun, Jia Xiuqin. 2006. Granite classification on the Sr and Yb contents and its implications[J]. Acta Petrologica Sinica, 22(9): 2249-2269 (in Chinese with English abstract).
Zhang Qi, Wang Yuanlong, Jin Weijun, Jia Xiuqin, Li Chengdong. 2008. Criteria for the recognition of pre-, syn- and post-orogenic granitic rocks[J]. Geological Bulletin of China, 27(1): 1-18 (in Chinese with English abstract).
Zhang Qi. 2013. Is the Mesozoic magmatism in eastern China related to the westward subduction of the Pacific plate?[J]. Acta Petrologica et Mineralogica, 32(1): 113-128 (in Chinese with English abstract).
Zhang Qi. 2013. The criteria and discrimination for A-type granites:A reply to the question put forward by Wang Yang and some other persons for "A-type granite:What is essence?"[J]. Acta Petrologica et Mineralogica, 32(2): 267-274 (in Chinese with English abstract).
Zhang Xuebing. 2017. Pb-Zn Polymetallic Deposits Metallogenic Series and Prospecting Direction of the West Slope of Southern Great Xing'an Range[D]. Changchun: Jilin University, (in Chinese with English abstract).
Zhu Xinyou, Zhang Zhimei, Fu Xu, Li Baiyang, Wang Yanli, Jiao Shoutao, Sun Yalin. 2016. Geological and geochemical characteristics of the Weilasito Sn-Zn deposit, Inner Mongolia[J]. Geology in China, 43(1): 188-208 (in Chinese with English abstract).
蔡剑辉, 阎国翰, 许保良, 王关玉, 牟保磊, 赵永超. 2006. 太行山-大兴安岭东麓晚中生代碱性侵入岩岩石地球化学特征及其意义[J]. 地球学报, 27(5): 447-459. DOI:10.3321/j.issn:1006-3021.2006.05.007
陈志广, 张连昌, 吴华英, 万博, 曾庆栋. 2008. 内蒙古西拉木伦成矿带碾子沟钼矿A型花岗岩地球化学和构造背景[J]. 岩石学报, 24(4): 257-267.
程细音, 祝新友, 刘孜. 2017. 内蒙古赤峰燕山晚期高演化花岗岩岩浆演化与锡多金属成矿[J]. 矿物岩石地球化学通报, 36: 142-142.
高飞, 刘永江, 温泉波, 李伟民, 冯志强, 范文亮, 汤超. 2018. 内蒙古突泉-科尔沁右翼中旗地区中生代花岗岩锆石U-Pb年龄及其地质意义[J]. 吉林大学学报(地球科学版), 48(3): 769-783.
高源, 郑常青, 姚文贵, 王浩, 李娟, 施璐, 崔芳华, 高峰, 张行行. 2013. 大兴安岭北段哈多河地区骆驼脖子岩体地球化学和锆石U-Pb年代学[J]. 地质学报, 87(9): 1293-1310.
顾玉超, 陈仁义, 贾斌, 宋万兵, 余昌涛, 鞠楠. 2017. 内蒙古边家大院铅锌银矿床深部正长花岗岩年代学与形成环境研究[J]. 中国地质, 44(1): 101-117.
黄始琪, 董树文, 张福勤, 苗来成, 朱明帅. 2014. 蒙古-鄂霍茨克构造带中段构造变形及动力学特征[J]. 地球学报, 35(4): 415-424.
贾小辉, 王强, 唐功建. 2009. A型花岗岩的研究进展及意义[J]. 大地构造与成矿学, 33(3): 465-480. DOI:10.3969/j.issn.1001-1552.2009.03.017
江思宏, 聂凤军, 刘翼飞, 云飞. 2010. 内蒙古拜仁达坝及维拉斯托银多金属矿床的硫和铅同位素研究[J]. 矿床地质, 29(1): 101-112. DOI:10.3969/j.issn.0258-7106.2010.01.010
李锦轶, 莫申国, 和政军, 孙桂华, 陈文. 2004. 大兴安岭北段地壳左行走滑运动的时代及其对中国东北及邻区中生代以来地壳构造演化重建的制约[J]. 地学前缘, 11(3): 157-168. DOI:10.3321/j.issn:1005-2321.2004.03.017
李鹏川, 刘正宏, 李世超, 徐仲元, 李刚, 关庆彬. 2016. 内蒙古巴林右旗胡都格绍荣岩体的年代学、地球化学、Hf同位素特征及构造背景[J]. 地球科学, 41(12): 1995-2007.
林强, 葛文春, 吴福元, 孙德有, 曹林. 2004. 大兴安岭中生代花岗岩类的地球化学[J]. 岩石学报, 20(3): 403-412.
刘昌实, 陈小明, 陈培荣, 王汝成, 胡欢. 2003. A型岩套的分类、判别标志和成因[J]. 高校地质学报, 9(4): 573-591. DOI:10.3969/j.issn.1006-7493.2003.04.011
刘建明, 张锐, 张庆洲. 2004. 大兴安岭地区的区域成矿特征[J]. 地学前缘, 11(1): 269-277. DOI:10.3321/j.issn:1005-2321.2004.01.024
刘智, 吕新彪, 梅微. 2012. 内蒙黄岗铁锡矿床物质来源探讨——来自O-Pb-S同位素的证据[J]. 矿床地质, (S1): 583-584.
刘智, 吕新彪, 梅微. 2013. 内蒙古黄岗矽卡岩型铁锡矿床S-Pb-O同位素组成及对成矿物质来源的指示[J]. 矿物岩石, 33(3): 30-37. DOI:10.3969/j.issn.1001-6872.2013.03.006
龙舟, 来林, 张学斌, 张明洋, 周长红. 2017. 内蒙古苏尼特右旗白垩纪A型花岗岩锆石U-Pb年龄、地球化学特征及其构造意义[J]. 地质与勘探, 53(6): 1115-1128. DOI:10.3969/j.issn.0495-5331.2017.06.007
毛景文, 谢桂青, 张作衡, 李晓峰, 王义天, 张长青, 李永峰. 2005. 中国北方中生代大规模成矿作用的期次及其地球动力学背[J]. 岩石学报, 21(1): 169-188.
毛景文, 张作衡, 余金杰, 王义天, 牛宝贵. 2003. 华北及邻区中生代大规模成矿的地球动力学背景:从金属矿床年龄精测得到启示[J]. 中国科学:地球科学, 33(4): 289-299.
毛景文, 周振华, 武广, 江思宏, 刘成林, 李厚民, 欧阳荷根, 刘军. 2013. 内蒙古及邻区矿床成矿规律与成矿系列[J]. 矿床地质, 32(4): 715-729. DOI:10.3969/j.issn.0258-7106.2013.04.006
彭青松, 张志强, 祝新友, 黄行凯, 徐巧. 2017. 大兴安岭中南段桦杆子沟岩体锆石U-Pb年龄及其地质意义[J]. 矿产勘查, 8(6): 927-936. DOI:10.3969/j.issn.1674-7801.2017.06.003
任耀武. 1995. 大兴安岭东南缘锡铜多金属矿床区域控矿因素分析[J]. 矿物岩石地球化学通报, 14(1): 33-34.
邵济安, 刘福田, 陈辉, 韩庆军. 2001. 大兴安岭-燕山晚中生代岩浆活动与俯冲作用关系[J]. 地质学报, 75(1): 56-63. DOI:10.3321/j.issn:0001-5717.2001.01.006
邵济安, 牟保磊, 朱慧忠, 张履桥. 2010. 大兴安岭中南段中生代成矿物质的深部来源与背景[J]. 岩石学报, 26(3): 649-656.
邵济安, 张履桥, 牟保磊. 2015. 大兴安岭中生代伸展造山过程中的岩浆作用[J]. 地学前缘, 6(4): 339-346.
佘宏全, 李进文, 向安平, 关继东, 杨勋城, 张德全, 谭刚, 张斌. 2012. 大兴安岭中北段原岩锆石U-Pb测年及其与区域构造演化关系[J]. 岩石学报, 28(2): 217-240.
汪洋. 2009. 北京白查A型花岗岩的地球化学特征及其成因与构造指示意义[J]. 岩石学报, 25(1): 13-24.
王春女, 王全明, 于晓飞, 韩振哲. 2016. 大兴安岭南段锡矿成矿特征及找矿前景[J]. 地质与勘探, 52(2): 220-227.
王京彬, 王玉往, 王莉娟. 2005. 大兴安岭南段锡多金属成矿系列[J]. 地质与勘探, 41(6): 15-20. DOI:10.3969/j.issn.0495-5331.2005.06.003
王莉娟, 岛崎英彦, 王京彬, 王玉往. 2001. 黄岗梁矽卡岩型铁锡矿床成矿流体及成矿作用[J]. 中国科学:地球科学, 31(7): 553-562.
王彦斌, 韩娟, 李建波, 欧阳志侠, 童英, 候可军. 2010. 内蒙赤峰楼子店拆离断层带下盘变形花岗质岩石的时代、成因及其地质意义——锆石U-Pb年龄和Hf同位素证据[J]. 岩石矿物学杂志, 29(6): 763-778. DOI:10.3969/j.issn.1000-6524.2010.06.013
吴福元, 李献华, 杨进辉, 郑永飞. 2007. 花岗岩成因研究的若干问题[J]. 岩石学报, 23(6): 1217-1238. DOI:10.3969/j.issn.1000-0569.2007.06.001
吴福元, 刘小驰, 纪伟强, 王佳敏, 杨雷. 2017. 高分异花岗岩的识别与研究[J]. 中国科学:地球科学, 47(7): 745-765.
许保良, 阎国翰, 张臣, 李之彤, 何中甫. 1998. A型花岗岩的岩石学亚类及其物质来源[J]. 地学前缘, 5(3): 113-124. DOI:10.3321/j.issn:1005-2321.1998.03.011
许文良, 王枫, 裴福萍, 孟恩, 唐杰, 徐美君, 王伟. 2012. 中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约[J]. 岩石学报, 29(2): 339-353.
杨奇荻, 郭磊, 王涛, 曾涛, 张磊, 童英, 史兴俊, 张建军. 2014. 大兴安岭中南段甘珠尔庙地区晚中生代两期花岗岩的时代、成因、物源及其构造背景[J]. 岩石学报, 30(7): 1961-1981.
张旗, 金惟俊, 李承东, 王元龙. 2009. 中国东部燕山期大规模岩浆活动与岩石圈减薄:与大火成岩省的关系[J]. 地学前缘, 16(2): 21-51. DOI:10.3321/j.issn:1005-2321.2009.02.002
张旗, 冉皞, 李承东. 2012. A型花岗岩的实质是什么?[J]. 岩石矿物学杂志, 31(4): 621-626. DOI:10.3969/j.issn.1000-6524.2012.04.014
张旗, 王焰, 李承东, 王元龙, 金惟俊, 贾秀勤. 2006. 花岗岩的Sr-Yb分类及其地质意义[J]. 岩石学报, 22(9): 2249-2269.
张旗, 王元龙, 金惟俊, 贾秀勤, 李承东. 2008. 造山前、造山和造山后花岗岩的识别[J]. 地质通报, 27(1): 1-18. DOI:10.3969/j.issn.1671-2552.2008.01.001
张旗. 2013. A型花岗岩的标志和判别——兼答汪洋等对"A型花岗岩的实质是什么"的质疑[J]. 岩石矿物学杂志, 32(2): 267-274. DOI:10.3969/j.issn.1000-6524.2013.02.014
张旗. 2013. 中国东部中生代岩浆活动与太平洋板块向西俯冲有关吗?[J]. 岩石矿物学杂志, 32(1): 113-128. DOI:10.3969/j.issn.1000-6524.2013.01.010
张雪冰. 2017.大兴安岭南段西坡铅锌多金属矿床成矿系列与找矿方向[D].吉林大学.
祝新友, 张志辉, 付旭, 李柏阳, 王艳丽, 焦守涛, 孙雅琳. 2016. 内蒙古赤峰维拉斯托大型锡多金属矿的地质地球化学特征[J]. 中国地质, 43(1): 188-208. DOI:10.3969/j.issn.1000-3657.2016.01.014