文章快速检索    
 
  中国地质 2021, Vol. 48 Issue (5): 1510-1523  
0
引用本文
张文浩, 汤冬杰, 杨烨, 张交东, 刘旭锋, 王丹丹, 曾秋楠, 刘卫彬. 2021. 华北地台中—新元古界烃源岩沉积特征及生烃潜力[J]. 中国地质, 48(5): 1510-1523.  
Zhang Wenhao, Tang Dongjie, Yang Ye, Zhang Jiaodong, Liu Xufeng, Wang Dandan, Zeng Qiunan, Liu Weibin. 2021. The sedimentary characteristics and hydrocarbon potential of Meso-Neoproterozoic source rocks in North China Platform[J]. Geology in China, 48(5): 1510-1523. (in Chinese with English abstract).  

华北地台中—新元古界烃源岩沉积特征及生烃潜力
张文浩1, 汤冬杰2, 杨烨3, 张交东1, 刘旭锋1, 王丹丹1, 曾秋楠1, 刘卫彬1    
1. 中国地质调查局油气资源调查中心, 北京 10083;
2. 中国地质大学(北京), 北京 10083;
3. 核工业北京地质研究院, 北京 10029
摘要:随着近年来元古宇商业性原生油气藏在全球范围的不断发现,元古宙地层已逐渐成为了油气勘探重点。华北地台燕山地区是中国中-新元古界最为发育的地区之一,中-新元古界总厚可达9553 m,虽油苗等油气显示发现已久,但多年来一直未取得油气突破。为了下一步开展更具针对性的油气调查及勘探,从中、新元古代这套巨厚的沉积地层中优选出油气勘探的有利烃源岩层段就有着非常重要的意义。本文分析了华北中元古代地层中发育的暗色泥岩与微生物碳酸盐岩这两类烃源岩层的沉积特征,并初步评价了它们的生烃潜力。串岭沟组、洪水庄组与下马岭组均发育有厚层的暗色泥、页岩,总有机碳含量TOC平均值分别为0.89%、2.54%、2.82%,有机质的镜质体反射率Ro(采用为镜状体反射率Rovl)值分别为2.03%、1.05%、0.63%。微生物碳酸盐岩在高于庄组、雾迷山组及铁岭组中普遍发育,其内富含微生物群落等丰富的有机质残留,发育TOC>0.2%的优质烃源岩层段。
关键词华北地台    中元古代    暗色泥页岩    微生物碳酸盐岩    生烃潜力    油气基础地质调查    
中图分类号:P541            文献标志码:A             文章编号:1000-3657(2021)05-1510-14
The sedimentary characteristics and hydrocarbon potential of Meso-Neoproterozoic source rocks in North China Platform
ZHANG Wenhao1, TANG Dongjie2, YANG Ye3, ZHANG Jiaodong1, LIU Xufeng1, WANG Dandan1, ZENG Qiunan1, LIU Weibin1    
1. Oil & Gas Survey, China Geological Survey, Beijing 100083, China;
2. School of Geoscience and Resources, China University of Geosciences, Beijing 100083, China;
3. Beijing Research Institute of Uranium Geology, Beijing 100029, China
Abstract: With the continuous discoveries of commercial Proterozoic primary reservoirs in recent years, Proterozoic strata have gradually become the focus of oil and gas exploration. Yanshan area of North China Platform is one of the most developed regions of the Meso-Neoproterozoic stratum in China, and the thickness of the Meso-Neoproterozoic can reach 9553 m. Although oil and gas shows such as oil seedlings were discovered long ago, the exploration breakthrough of oil and gas has not been made so far. In order to carry out targeted oil and gas investigation and exploration, it is of great significance to select the favorable source rock for oil and gas exploration from the Meso-Neoproterozoic sedimentary strata. Based on the analysis of sedimentary characteristics of dark mudstone and microbial carbonate rocks of Meso-Proterozoic in North China Platform, the hydrocarbon generating potential was preliminarily evaluated. The average values of TOC for thick dark mudstones or shales developed in Chuanliggou Formation, Honghongzhuang Formation and Xiamaling Formation are 0.89%, 2.54% and 2.82%, respectively, and the average values of Ro are 2.03%, 1.05% and 0.63%, respectively. Microbial carbonate rocks are widely developed in Gaoyuzhuang Formation, Wumishan Formation and Tieling Formation, rich in microbial community and other organic matter residues, in which high quality source rock with TOC > 0.2% are developed.
Key words: North China platform    Meso-Neoproterozoic    dark mudstone and shale    microbial carbonate rock    hydrocarbon generation potential    oil and gas geological survey    

1 引言

随着近年来元古宇原生油气藏的不断发现及工业开发,元古宙地层已逐渐成为了油气勘探的重点(Bhat et al., 2012Craig et al., 2013Ahmad et al., 2013孙枢和王铁冠,2016赵文智等,2019)。早期研究认为,显生宙以前的烃源岩沉积相当有限,大范围有效烃源岩只分布在寒武纪以后地层中。但近年来的研究证实,中-新元古界不仅存在多样化的生命形式,该时期温暖的气候条件和海洋分层、缺氧及硫化的化学条件都有利于微生物的高生产量和高有机质埋藏率而发育有极佳的烃源岩,故对中新元古代地层生烃潜力的评价及原生油气藏的勘探等工作备受关注。华北地台燕山地区是中国乃至全世界中-新元古界最发育的地区之一,该区中新元古界沉积面积约为70000 km2,蓟县标准剖面上中-新元古界总厚可达9553 m(郝石生等, 1990)。自从20世纪50-60年代中国开展大规模油气普查以来,华北地区中、新元古界已发现上百个油苗点并确认了古油藏的存在,油气地质研究也从早期对地层沉积格架、层序划分、地表油苗油源分析研究上,逐渐变化发展到目前对地层古生产力、生烃潜力及微生物岩沉积构造的探索上,大量的研究与调查表明地质历史时期该地区中-新元古界具有较大生烃潜力,并且曾有过大规模的油气生成、运移、聚集与破坏过程(王立峰和李不惑, 1993刘宝泉等,2000方杰等,2002王杰等,2004张水昌等,2007;史晓颖等,2008;罗情勇等,2013牛露等,2015孙枢和王铁冠,2016赵文智等,2019)。但是在巨厚的中-新元古界中,哪一层段最有可能成为烃源岩以及其生烃潜力有多大,仍有待进一步研究。

华北地台中—新元古界主要由环潮坪石英砂岩、浅海碳酸盐岩和浅海—潟湖相暗色页岩3种沉积相组合构成,以陆表海浅水碳酸盐岩占主导,其中发育的多套暗色泥页岩,被认为是中国大陆最古老的富有机质沉积和烃源岩地层之一(鲍志东等,2004史晓颖等,2008a孙枢和王铁冠,2016)。其实除了暗色泥页岩,微生物碳酸盐岩作为一种特殊的碳酸盐岩类型,以富含大量微生物及其活动的相关构造为特征,因可被作为一种重要的烃源岩而日益受到重视。本文对华北地台中—新元古界发育的暗色泥岩(主要为串岭沟组、洪水庄组、下马岭组)与微生物碳酸盐岩(主要为高于庄组、雾迷山组、铁岭组)的沉积特征及生烃潜力开展初步研究及评价,希望为以后的油气勘探提供理论依据与帮助。

2 区域地质背景

燕山地区位于华北地台的中北部,是中国中、新元古代沉积地层的标准剖面所在地,形成于Columbia超大陆裂解到Rodina超大陆汇聚的全球构造背景下,为海水自北向南持续侵入发展的海盆,是发育于燕山地区古老变质岩系之上的一套似盖层沉积地层(图 1)(陈晋镳等,1999Zhao et al., 2002)。燕山地区中、新元古界被划分为3个系和12个组,自下而上依次为:长城系(常州沟组、串岭沟组、团山子组、大红峪组),蓟县系(高于庄组、杨庄组、雾迷山组、洪水庄组、铁岭组、下马岭组)和青白口系(长龙山组、景儿峪组)(图 2)(陈晋镳等,1999)。根据近年来取得的高精度定年数据,可对中新元古代地层格架进行较为准确的年龄框定(图 2)(Li et al., 2013张文浩等,2016)。中元古界上部在华北地台大部分地区出现缺失,位于长龙山组和下马岭组间的不整合代表了长达约4亿年的地层间断。

图 1 华北地台中元古代古地理图(据王鸿祯等, 1985 1-陆表海碎屑、泥质组合;2-陆表海碎屑岩;3-陆表海泥质碎屑岩;4-滨海碳酸盐组合晚期超覆;5-浅海碎屑组合;6-深浅海碎屑复理石组合;7-半深海中基性、中酸性火山碎屑复理石组合;8-半深海基性火山喷发 Fig. 1 Paleogeography of Mesoproterozoic in North China Platform (after Wang Hongzhen et al., 1985) 1-Clastic rocks and mudstones in the epicontinental sea; 2-Clastic rocks in the epicontinental sea; 3-Argillaceous clastic rocks in the epicontinental sea; 4-Carbonate rocks in the littoral environment; 5-Clastic rocks in shallow sea; 6-Clastic flysch sequence in the lower part of shallow sea; 7-Intermediate-basic and ntermediate-acid volcaniclastic flysch sequence in the bathyal environment; 8-The base volcanic eruption in the bathyal environment
图 2 华北地台元古宙地层序列及年龄限制 1-灰岩;2-泥质灰岩;3-白云岩;4-灰质白云岩;5-白云质灰岩;6-粉砂质白云岩;7-页岩;8-粉砂质页岩;9-砂岩;10-砾岩;11-火山岩;12-花岗岩;13-片麻岩;14-沥青质;15-叠层石;16-燧石条带 Fig. 2 Stratigraphic sequence and age restriction of Proterozoic in North China Platform 1-Limestone; 2-Marlite; 3-Dolomite; 4-limy dolomite; 5-Dolomitic limestone; 6-Silty dolomite; 7-Shale; 8-Silty shale; 9-Sandstone; 10-Conglomerate; 11-Volcanic rock; 12-Granite; 13-Gneiss; 14-Asphaltene contents; 15-Stromatolite; 16-Chert band

华北地台燕山地区的沉积演化过程大致经历了早期裂谷发育时的长城系海相碎屑岩沉积、中期裂谷扩展期的蓟县系碳酸盐岩沉积和晚期裂谷稳定时的下马岭组泥岩沉积3个阶段,到青白口纪末期的蓟县运动造成燕辽裂谷抬升,结束了裂谷的发育史,也导致了新元古界与古生界之间呈大范围平行不整合接触。其中,常州沟期—大红峪期为裂陷槽的形成阶段,伴随有玄武岩活动;高于庄期—铁岭期为发展阶段,表现为海域的扩大和稳定性增强;而青白口纪则是裂谷萎缩期,与Rodinia超大陆形成过程中的板块汇聚相关,华北陆台上沉积地层的分布范围明显收缩,蓟县运动使华北中北部地区整体上升为陆,随之在整个长达两亿年左右的震旦纪时期,中北部地区一直处于隆起剥蚀状态。

3 华北地台中元古界烃源岩层沉积特征

华北地台燕山地区沉积了巨厚的中—上元古界海相碳酸盐岩夹碎屑岩地层,调查研究表明,在这些碎屑岩和碳酸盐岩中均发育丰富的微生物(席)相关构造,代表了当时活跃的微生物活动及较好的有机质保存。总体上看,碳酸盐岩中主要发育微生物建隆,包括叠层石、凝块石、纹层石等微生物碳酸盐岩,其在高于庄组、雾迷山组和铁岭组中尤为丰富,可作为良好的烃源岩层。中元古界其余地层则以碎屑岩沉积为主,其间发育有华北乃至中国最古老的暗色泥页岩层段。

3.1 暗色泥页岩

在中国元古宇海相沉积体系中,碳酸盐岩是主要的沉积岩类型,暗色泥页岩主要发育在3个层位,分别是串岭沟组中部、洪水庄组中部和下马岭组上部。

串岭沟组原称“串岭沟页岩”,意指下部为薄层砂岩夹页岩,上部有数层硅质石灰岩,后经修订将上部硅质白云岩地层从“串岭沟组”划分出去并建立团山子组(邢裕盛等,1989)。串岭沟组岩性主要为一套粉砂岩、灰绿色泥页岩和黑色页岩,含丰富的微古植物,是华北地区第一个含泥岩和黑色页岩的沉积层段(图 3a)(朱士兴等,1994)。串岭沟组主要分布于华北燕辽地区,自北向南厚度有减薄趋势,在蓟县、兴隆一带沉积厚度最大(均大于500 m),与下伏常州沟组砂岩以及上覆团山子组厚层白云岩之间均为整合接触。串岭沟组地层中沉积构造相对简单,粉砂岩夹层中可见沙纹层理;暗色泥岩中发育水平纹层和个别地点见有浪成波痕外,少见其他构造,故一般认为串岭沟组主要形成于水体相对较深的静水环境(王杰等,2004)。串岭沟组暗色页岩中发育细菌微生物席(图 3b),而砂脉构造的研究报道,被认为是有机质厌氧氧化形成甲烷而缓慢逃逸形成的(图 3c),这些均表明当时活跃的微生物群落能够产生丰富的有机质而形成烃源岩(梅冥相,2007史晓颖等,2008b汤冬杰等,2009)。

图 3 华北地台燕山地区中新元古界暗色泥岩发育特征 a—串岭沟组灰黑色泥岩夹粉砂岩透镜体,河北宽城;b—串岭沟组MISS构造,河北宽城;c—串岭沟组暗色泥岩中砂脉构造,河北宽城;d—洪水庄组暗色泥页岩,天津蓟县;e—下马岭组灰黑色泥页岩,河北张家口;f,g—下马岭组沥青层与“沥青饼”,河北张家口 Fig. 3 Characteristics of Meso-Neoproterozoic dark mudstone and shale in the Yanshan area, North China Platform a-Grayish black mudstone with siltstone lens in Chuanlinggou Formation, Kuancheng area of Hebei Province; b-Microbial induced sedimentary struture in Chuanlinggou Formation, Kuancheng area of Hebei Province; c-The sand veins in Chuanlinggou Formation, Kuancheng area of Hebei Province; d-Dark muddy-shale in Hongshuizhuang Formation, Jixian area of Tianjin city; e-Dark muddy-shale in Xiamaling Formation, Zhangjiakou area of Hebei Province; f, g-The asphalt layer and nodule in Xiamaling Formation, Zhangjiakou area of Hebei Province

洪水庄组为高振西先生于1934年建立,选用蓟县洪水庄地名,原称之为“洪水庄页岩”。洪水庄组主要分布在华北燕山地区,沉积中心在蓟县、兴隆、宽城一带,沉积厚度为100~170 m,富含微古植物,与上覆铁岭组和下伏雾迷山组均为整合接触关系(孙淑芬,2000)。洪水庄组在华北燕山地区主要为一套黑色页岩和白云岩为主的浅海相沉积,下部为黑色页岩夹薄砂岩条带,上部发育大量粉砂质白云岩,顶部开始发育泥晶白云岩。黑色页岩大多主要发育在本组中部层位,代表了洪水庄组沉积水体最深时期,可能沉积于较深水潮下带或深水潟湖环境(图 3d)。研究表明,洪水庄组黑色页岩大部分沉积于缺氧或静海环境,其沉积时期古生产力水平达到中等—高水平,钻井岩心中可见固体沥青及渗出的油苗(罗情勇等,2013汪凯明和罗顺社,2014)。

下马岭组岩性组合以细碎屑岩为主,其中泥页岩占91%,砂岩占7%,碳酸盐岩占2%及少量铁质岩等,暗色泥岩厚度在大部分燕山地区均处在100~300 m,是中新元古界最有名的富有机质层段(王立峰和李不惑,1993方杰等,2002张水昌等,2007)。下马岭组地层在燕辽地区分布广泛,于冀西北下花园、赵家山一带层序最完整、厚度最大,厚度可达近600 m,与下伏铁岭组及上覆长龙山组多呈平行不整合接触。下马岭组岩性大致可分为4段,下部为杂色页岩、黄绿色页岩夹细砂岩,中部为紫红色、绿色页岩,可见海绿石细砂岩,上部为黑色页岩(图 3e)夹硅质泥岩,可见油页岩,其间可见沥青层及“沥青饼”发育(图 3fg),顶部发育叠层石灰岩(张水昌等, 2007)。下马岭组沉积地层整体组成了一个由海平面相对升高到降低的完整沉积旋回,主要形成于潮坪及浅海陆棚环境,上部的黑色页岩段为还原条件潮下深水低能沉积,为本组烃源岩层(图 3e)。早在20世纪60年代,已在下马岭组发现了油苗沥青,并在下花园煤矿的坑道中见有稠油,而且发现油苗分布与下马岭组分布一致,并证实为下马岭组原生,后经查明上部黑色页岩段部分为油页岩,它是油苗的来源层(王立峰和李不惑, 1993)。

3.2 微生物碳酸盐岩

海相碳酸盐岩在全球油气生产中占据极为重要的地位,海相碳酸盐岩油气资源量约占全球油气资源总量的70%(赵文智等, 2014)。华北地台中元古界发育巨厚的海相碳酸盐岩沉积,其中高于庄组至雾迷山组沉积时期由于华北陆台地壳整体大幅度沉降,形成了一个广阔的陆表海域,大部分地区为潮坪环境,发育了一套厚数千米的以浅海相碳酸盐岩为主的地层。微生物碳酸盐作为一种特殊的碳酸盐类型,它不仅可作为良好的油气藏储层,而且由于其高细菌参与度和高有机质含量还可形成重要的烃源岩而备受学者关注,并已不断取得油气发现。目前具有重大油气发现的微生物碳酸盐岩主要分布于美国阿拉巴马州阿普尔顿油田上侏罗统(Haddad and Mancini, 2013)、东西伯利亚地区上元古界里费系(李国玉, 2006)、巴西桑托斯盆地下白垩统(Wright and Racey, 2009)、阿曼盐盆上埃迪卡拉统—上白垩统(Schroder et al., 2005)、哈萨克斯坦田吉兹油田上泥盆统—下石炭统(Kenter et al., 2004)以及中国华北渤海湾任丘油田中元古界雾迷山组(余家仁等, 1998)等盆地和地区的不同层系中。

华北地台中新元古界广泛发育微生物碳酸盐岩,微生物岩碳酸盐岩(简称微生物岩)是微生物与环境相互作用的产物,微生物岩中丰富的微生物(席)相关构造,表明当时华北陆表海海底曾发育有丰富的微生物群落。微生物群落活跃的生命代谢活动意味着高的初级生产量和巨量的有机质积累。因此,微生物碳酸盐建造具有巨大的成烃潜力,已被作为一种重要的烃源岩层,再加上其往往具有自生自储的特点,故勘探远景良好(滕建彬等, 2007)。华北地台燕山地区中、新元古界发育的微生物碳酸盐岩具有以下特点:

(1)微生物岩发育的时代与层位多,华北地区中元古代团山子组、高于庄组、雾迷山组及铁岭组中均可见微生物岩(图 4a~g)。微生物岩在中新元古代的普遍发育,说明微生物群落广布且活跃,一方面,这些微生物大量生长的水域往往富营养化,在这种环境沉积的地层往往富含大量有机质,能形成好的烃源岩;另一方面,部分蓝细菌等微生物死亡后被埋藏能够直接参与石油的形成(王月等, 2011)。中古元代海洋总体缺氧和低硫酸盐浓度条件以及无动物觅食消耗必将导致沉积物中的高有机质埋藏量和高甲烷生产量。

图 4 燕山地区中元古界微生物碳酸盐岩发育特征 a—下马岭组顶部叠层石,河北张家口;b,c—铁岭组柱状叠层石,天津蓟县;d—雾迷山组中部微指状叠层石,北京昌平;e—雾迷山组底部纹层石,北京延庆;f—高于庄组三段叠层石,河北兴隆;g—高于庄组四段凝块石,河北平泉 Fig. 4 Characteristics of Meso-Proterozoic microbial carbonate in the Yanshan area, North China Platform a-Stromatolite in the top of Xiamaling Formation, Zhangjiakou area of Hebei province; b, c-Columnar stromatolite in Tieling Formation, Jixian of Tianjin city; d-Microdigitate stromatolites in Wumishan Formation, Changping of Beijing city; e-Biolaminites in Wumishan Formation, Yanqing of Beijing city; f-Stromatolite in the third member of Gaoyuzhuang Formation, Xinglong area of Hebei province; g-Thrombolite in the fourth member of Gaoyuzhuang Formation, Pingquan area of Hebei Province

(2)中元古界微生物岩类型多样,包括叠层石、凝块石、纹层石等均有很好发育。高于庄组和铁岭组中发育的叠层石形态多样,常呈柱状、丘状及锥状(图 4bcf),雾迷山组中还可见微指状叠层石(图 4d)。纹层石(图 4e)与凝块石(图 4g)在高于庄组和雾迷山组中均可见,纹层构造与凝块构造明显。对这些微生物岩开展显微及荧光观察表明,其中可见大量的有机质残留,主要是与其形成相关的球状细菌微生物群落及其代谢活动产生的胞外聚合物(图 5a~d)。

图 5 中元古界高于庄组微生物岩中有机质发育 a—高于庄组四段微生物岩中细菌群落,河北宽城;b—a图的荧光照片,有机质残留明显;c—高于庄组中四段微生物岩中细菌群落,北京延庆;d—c图的荧光照片,有机质残留明显 Fig. 5 Organic matter rich in microbial carbonate of Meso-Proterozoic Gaoyuzhuang Formation a-Spherical bacterial community in the microbialite of the fourth member of Gaoyuzhuang Formation, Kuancheng area of Hebei province; b-The fluorescence photo of "picture a", organic matter residue visible; c-Spherical bacterial community in the microbialite of the fourth member of Gaoyuzhuang Formation, Yanqing of Beijing; d-The fluorescence photo of "picture c", organic matter residue visible

(3)微生物碳酸盐岩分布范围广,厚度大。微生物岩在中新元古界不仅发育的层位多,而且发育的厚度大,范围广。铁岭组中的叠层石相互堆叠可形成高达30m的微生物岩建隆。北京延庆地区高于庄组四段发育的微生物建隆,具有明显的礁体结构,礁体厚可达240 m,沿走向延伸可达30 km以上。微生物岩礁体由形态多变的叠层石和凝块石构成骨架结构,其间发育大量被鱼骨状方解石胶结物充填的孔洞(汤冬杰等, 2017)。叠层石和凝块石约占礁体总体积的40%~60%;胶结物主要由鱼骨状方解石和微亮晶,孔洞占总体积的10%~15%。与铁岭组叠层石礁相比,高于庄组微生物岩礁具有更大的规模,其结构与现代微生物岩礁相近,但构成格架的叠层石与凝块石往往不具有明显的边界层。这种沉积类型发育的古环境可能主要位于潮下带中上部,受波浪作用影响较明显,其中可识别的微生物席与有机质碎屑含量高达20%~30%,其原始有机生产力可能更高。

4 华北地台元古界烃源岩评价 4.1 有机质丰度与成熟度

总有机碳含量(TOC)是常被用来衡量烃源岩有机质丰度的基础指标之一。华北燕山地区中元古界串岭沟组、洪水庄组、下马岭组中均发育暗色泥页岩。串岭沟组中部发育的暗色泥页岩TOC分布范围为0.24%~2.36%,平均为0.89%,大部分在0.5%~1.5%(图 6)。洪水庄组中部发育的暗色泥页岩TOC分布范围为0.42%~5.72%,平均为2.54%, 大部分大于1.0%,达到好烃源岩级别(图 6)。下马岭组上部发育的黑色泥页岩TOC分布范围为1.42%~5.47%,平均为2.82%, 大部分在1.5%~3.5%,属于优质烃源岩(图 6)。3个组泥页岩的生烃潜量S1+S2值表现为相同特征,下马岭组泥页岩S1+S2平均值为3.90 mg/g, ,明显高于洪水庄组泥页岩的2.58 mg/g与串岭沟组泥页岩的0.06 mg/g(王浩等, 2019)。串岭沟组黑色泥页岩的整体有机质含量低于洪水庄组与下马岭组,下马岭组上部发育高有机质含量的优质烃源岩,这些可能与下马岭组时期发育更加丰富、活跃的藻类微生物活动有关。

图 6 华北燕辽地区中新元古界暗色泥页岩TOC含量分布 (串岭沟组样品数据来自Luo et al., 2014牛露等,2015。河北宽城地区,样品数为14个;洪水庄组数据来自罗情勇等,2013牛露等,2015宗文明等,2017;河北宽城与辽宁凌源地区,样品数为43个;下马岭组数据来自本文,采自张家口下花园赵家山,样品数为34个) Fig. 6 TOC distribution of Meso-Neoproterozoic dark shale in the Yanshan area, North China Platform (Data of Chuanlinggou Formation from Luo et al., 2014; Niu Lu et al., 2015. Kuancheng area, Hebei Province, with 14 samples; Hongshuizhuang Formation data from Luo Qingyong et al., 2013; Niu Lu et al., 2015; Zong Wenming et al., 2017. Kuancheng, Hebei and Lingyuan, Liaoning, with 43 samples; The data of Xiamaling Formation are collected from Zhaojiashan, Xiahuayuan, Zhangjiakou, with 34 samples)

高于庄组、雾迷山组和铁岭组均沉积有厚层的碳酸盐岩,高于庄组碳酸盐岩TOC含量为0.12%~0.48%,平均值约为0.26%;雾迷山组碳酸盐岩TOC含量为0.06%~0.27%,平均值约为0.15%;铁岭组碳酸盐岩TOC平均值可达到约0.31%(刘宝泉等, 2000王杰等, 2004孙枢与王铁冠, 2016)。笔者对河北平泉王杖子高四段凝块石、宽城崖门子高三段纹层石进行测试分析可知,这两种微生物岩的TOC值为0.15%~0.31%,大部分数值在0.21%以上。对于碳酸盐岩的有机质含量评价的级别划分,目前还没有统一标准,现根据国内判断盐酸盐岩生油岩的有机碳下限值多小于0.2%可知(Hunt 1972傅家谟和刘德汉, 1982Tissot and welte, 1984陈丕济, 1985),高于庄组与铁岭组部分层段的碳酸盐岩已达到烃源岩标准。有学者通过热演化模拟实验进一步表明,微生物碳酸盐岩比泥灰岩具有更高的烃气产率和排烃率,所以评价微生物岩的烃源岩下限值可能更低(佘敏等, 2019)。因此,中新元古界碳酸盐岩中TOC含量>0.2%的微生物岩层可作为油气勘探的优质烃源岩层。有机质的镜质体反射率是最重要的衡量有机质成熟度指标,并用来标定从早期成岩作用直至深变质阶段有机质的热演化程度。本文烃源岩的镜质体反射率数值主要采用样品中镜状体的测试数值,其反射率值大致等同于富氢镜质体的反射率值(钟宁宁和秦勇, 1995牛露等, 2015)。串岭沟组泥页岩热演化程度相对最高,Ro值范围为1.54%~3.01%,平均值为2.03%,处于准变质作用阶段,属于干气带,只产甲烷气;洪水庄组泥页岩热演化程度居中,Ro平均值约为1.05%,泥页岩均处于深成岩晚期阶段,属于湿气和凝析气带(牛露等, 2015; 宗文明等, 2017)。下花园地区下马岭组有机质的Ro值仅为0.5%~0.7%,处于低成熟阶段,所以该区下马岭组烃源岩经常被作为热模拟研究的对象(方杰等, 2002张水昌等, 2007刘岩等, 2011王作栋等, 2013)。对于碳酸盐岩,华北地台中新元古界高于庄、雾迷山、铁岭组发育的碳酸盐岩均处于高成熟—过成熟阶段,这些碳酸盐岩实测等效镜质组反射率Ro值范围为1.20%~2.3%,属于干气带(孙枢和王铁冠, 2016)。据初步估算,华北地台燕山地区中—新元古界烃源岩生烃强度大于50×104 t/km2的面积超过16×104 km2,总生烃量约为1227.01×108 t,生油量为941.01×108 t,具良好资源潜力(张大伟等, 2013王浩等, 2019)。

4.2 中新元古界烃源岩特殊性

越来越多的研究表明,中新元古代是地球历史上生命与环境演化的一个重要阶段,其独特的海洋化学条件、大气氧含量水平及生物演化特征,决定了中新元古界烃源岩相比显生宙烃源岩应有一定区别。元古宙中期(1.6~1.0 Ga)处于地质历史上两次大气成氧事件GOE(Great Oxidation Event,大成氧事件)与NOE(Neoproterozoic Oxygenation Event,新元古代氧化事件)之间,中元古代海洋具有被称为“硫化楔”的三层海洋分层模式,海水表层有氧、富硫酸盐,中层为向洋盆方向尖灭的缺氧硫化楔状体,而深层为缺氧富铁的永久性分层状态(Canfield, 1998Anbar and Knoll, 2002)。正是由于海底为缺氧的环境条件,这样海洋表层光合作用和底层微生物席产生的有机物质在水体中不容易被氧化分解而具有更好的埋藏条件。因此,中元古代海洋的有机质埋藏率在理论上应高于显生宙及现代海洋环境,并据初步估算,华北中元古界富微生物席碳酸盐岩的生烃潜力约为10亿t油当量(史晓颖等, 2008a)。

相比显生宙,中元古代烃源岩是真核生物规模性勃发之前的富有机质沉积,其母质来源更多的来自于原核生物。在后生动物出现(约580 Ma)之前的中元古代时期,微生物在前寒武纪海洋中居统治地位。对中元古代下马岭组泥页岩生物标志物测试分析表明,该时期烃源岩有机质输入以古细菌、蓝细菌等原始低等水生生物为主;同时,泥页岩样品中检测不到常规甾烷(王作栋等, 2013),这可能是沉积有机质形成时的生物主要是蓝细菌等原核生物,与真核生物尚未大规模发育有关,这是中新元古界原始烃源岩不同于原油和常规烃源岩的一个重要特征。

中新元古界沉积距今时代久远,是目前世界上发现最老的油气藏层位。中—新元古界烃源岩经过了漫长的地质演化过程而使早期油气难以保存,如中生代燕山运动带来大量的岩浆活动、强烈的构造变形以及抬升暴露而造成的地层剥蚀等,这些都会使早期生成油气大量散失而难以保留工业性油气藏,这可能是至今取得油气突破的主要原因。但随着中新生界沉积,中元古界烃源岩可能进一步熟化生烃也就是发生二次生烃而形成新的油气藏。因此,即使燕山地区部分中—新元古界露头样品的有机质成熟度不高,但在中新生界较厚,埋深较大的地区,有机质应该已经进入生烃门限,晚期生烃潜力较大,这应是今后油气调查及勘探的主要方向。

5 结论

(1)华北地台燕山地区串岭沟组中部、洪水庄组中部和下马岭组上部发育3套暗色泥页岩,3个组暗色泥页岩的总有机碳含量TOC平均值分别为0.89%、2.54%、2.82%,均达到中等及以上级别,有机质的镜质体反射率Ro值分别为2.03%、1.05%、0.63%。

(2)微生物碳酸盐岩在华北燕山地区中新元古界海相碳酸盐岩地层中普遍发育,在高于庄组、雾迷山组与铁岭组中尤为丰富,具有发育层位多、类型多样、厚度大及范围广等特点,存在总有机碳含量TOC>0.2%的优质烃源岩层段,是中新元古界重要的烃源岩层。

(3)中新元古代地层沉积时代久远,除原生油气藏外,应重视中新元古界的晚期生烃作用。同时,中新元古代独特海洋化学条件、大气氧含量水平及生物演化特征决定了该时期海洋有机质埋藏率应高于显生宙及现代海洋环境,烃源岩的成烃母质主要是蓝细菌等原核生物。

参考文献
Ahmad M, Dunster J N, Munson T J, Edgoose C J. 2013. Overview of the geology and mineral and petroleum resources of the McArthur Basin[C]//Annual Geoscience Exploration Seminar, Northern Territory, Australia.
Anbar A D, Knoll A H. 2002. Proterozoic ocean chemistry and evolution: A Bioinorganic Bridge?[J]. Science, 297(5584): 1137-1142. DOI:10.1126/science.1069651
Bao Zhidong, Chen Jianfa, Zhang Shuichang, Zhao Hongwen, Zhang Haiqing, Li Yan. 2004. Sedimentary environment and development controls of the hydrocarbon source beds: Middle and Upper Proterozoic in northern North China[J]. Science China Earth Sciences, 47(supp.1): 1141-1199 (in Chinese).
Bhat G M, Craig J, Hafiz M, Hakhoo N, Cozzi A. 2012. Geology and hydrocarbon potential of Neoproterozoic-Cambrian Basins in Asia: An introduction[J]. Geological Society, London, Special Publications, 366: 1-17. DOI:10.1144/SP366.15
Canfield D E. 1998. A new model for Proterozoic ocean chemistry[J]. Nature, 396: 450-453. DOI:10.1038/24839
Chen Jinbiao, Zhang Pengyuan, Gao Zhenjia. 1999. Stratigraphic Code of China: Mesoproterozoic[M]. Beijing: Geological Publishing House (in Chinese with English abstract).
Chen Piji. 1985. Comment on several topics in the geochemistry carbonate source rock[J]. Experimental Petroleum Geology, 7(1): 3-12 (in Chinese with English abstract).
Craig J, Biffi U, Galimberti R F, Ghori K A R, Gorter J D, Hakhoo N, Heron D P L, Thurow J, Vecoli M. 2013. The palaeobiology and geochemistry of Precambrian hydrocarbon source rocks[J]. Marine and Petroleum Geology, 40: 1-47. DOI:10.1016/j.marpetgeo.2012.09.011
Duan Chao, Li Yanhe, Wei Minghui, Yang Yun, Hou Keyun, Chen Xiaodan, Zou Bin. 2014. U-Pb dating study of detrital zircons from the Chuanlinggou Formation in Jiangjiazhai iron deposit, North China craton and its geological significances[J]. Acta Petrologica Sinica, 30(1): 35-48 (in Chinese with English abstract).
Fang Jie, Liu Baoquan, Jin Fengming, Liu Jingqiang, Yu Zhanwen. 2002. Source potential for generating hydrocarbon and exploration prospects of Middle-Upper Proterozoic in the Northern China[J]. Acta Petrolei Sinica, 23(4): 18-23 (in Chinese with English abstract).
Fu Jiemo, Liu Dehan. 1982. Some characteristics of the evolution of ogranic matter in carbonate formations[J]. Acta Petrolei Sinica, 1: 1-9 (in Chinese with English abstract).
Gao Linzhi, Zhang Chuanheng, Shi Xiaoying, Song Biao, Wang Ziqiang, Liu Yaoming. 2008a. New evidence of SHRIMP zircon ages: Xiamaling Formation attributable to Mesoproterozoic in North China old land[J]. Chinese Science Bulletin, 53(21): 2617-2623 (in Chinese). DOI:10.1360/csb2008-53-21-2617
Gao Linzhi, Zhang Chuanheng, Yin Chongyu, Shi Xiaoying, Wang Ziqiang, Liu Yaoming, Liu Pengju, Tang Feng, Song Biao. 2008b. SHRIMP zircon ages: Basis for refining the chronostratigraphic classification of the Meso- and Neoproterozoic strata in North China old land[J]. Acta Geoscientica Sinica, 29(3): 366-376 (in Chinese with English abstract).
Gao Linzhi, Zhang Chuanheng, Liu Pengju, Ding Xiaozhong, Wang Ziqiang, Zhang Yanjie. 2009. Recognition of Meso- and Neoproterozoic stratigraphic framework in North and South China[J]. Acta Geologica Sinica, 30(4): 433-446 (in Chinese with English abstract).
Haddad S A, Mancini E A. 2013. Reservoir characterization, modeling, and evaluation of Upper Jurassic smackover microbial carbonate and associated facies in little cedar creek field, Southwest Alabama, Eastern Gulf Coastal Plain of the United States[J]. AAPG Bulletin, 97(11): 2059-2083. DOI:10.1306/07081312187
Hao Shisheng, Gao Yaobin, Zhang Youcheng. 1990. Middle-Upper Proterozoic Petroleum Geology in North of North China[M]. Dongying: China University of Petroleum Press (in Chinese).
Hunt J M. 1972. Distribution of carbon in the crust of the earth[J]. AAPG Bull, 56(11): 2273-2277.
Kenter J A M, Harris P M M, Porta G D. 2004. Microbial and cement boundstone-dominated flanks (and reservoirs) of an isolated carbonate platform[J]. AAPG Annual Convention.
Li H, Lu S, Su W, Xiang Z, Zhou H, Zhang Y. 2013. Recent advances in the study of the Mesoproterozoic geochronology in the North China craton[J]. Journal of Asian Earth Sciences, 72: 216-227. DOI:10.1016/j.jseaes.2013.02.020
Li H, Su W, Zhou H, Xiang Z, Tian H, Yang L, Huff W D, Ettensohn F R. 2014. The first precise age constraints on the Jixian system of the Meso-to Neoproterozoic standard section of China: SHRIMP zircon U-Pb dating of bentonites from the Wumishan and Tieling Formations in the Jixian Section, North China Craton[J]. Acta Petrologica Sinica, 30: 2999-3012.
Li G Y. 2006. Petroleum-rich ancient strata in east Siberian inspire petroliferous perspective of Sinian strata in China[J]. Marine Origin Petroleum Geology, 11(3): 1-3 (in Chinese with English abstract).
Liu Baoquan, Qin Jianzhong, Li Xin. 2000. The characteristics of the source rocks of the Middle-Upper Proterozoic source rock and the analysis of oil seedling and oil source in the northern Hebei depression[J]. Marine Origin Petroleum Geology, 5(1/2): 35-46 (in Chinese with English abstract).
Li Huaikun, Zhu Shixing, Xiang Zhenqun, Su Wenbo, Lu Songnian, Zhou Hongying, Geng Jianzen. Li Sheng, Yang Fengjie. 2010. Zircon U-Pb dating on tuff bed from Gaoyuzhuang Formationin Yanqing, Beijing: Further constraints on the new subdivision of the Mesoproterozoic stratigraphy in the Northern North China Craton[J]. Acta Petrologica Sinica, 26(7): 2131-2140 (in Chinese with English abstract).
Li Huiakun, Su Wenbo, Zhou Hongying, Geng Jianzhen, Xiang Zhenqun, Cui Yurong, Liu Wencan, Lu Songnian. 2011. The base age of the Changchengian System at the northern North China Craton should be younger than 1670 Ma: Constraints from zircon U-Pb LA-MC-ICPMS dating of a granite-porphyry dike in Miyun County, Beijing[J]. Earth Science Frontiers, 18(3): 108-120 (in Chinese with English abstract).
Liu Yan, Zhong Ningning, Song Tao, Tian Yongjing, Han Hui, He Xin. 2011. Kinetics of marine oil shale: A case study of Xiamaling Formation oil shale in Yanshan Region, North China[J]. Journal of Jilin University (Earth Science Edition), 41(1): 78-84 (in Chinese with English abstract).
Lu S, Zhao G, Wang H, Hao G. 2008. Precambrian metamorphic basement and sedimentary cover of the North China Craton: A review[J]. Precambrian Research, 160: 77-93. DOI:10.1016/j.precamres.2007.04.017
Luo G, Junium C K, Kump L R, Huang J, Li C, Feng Q, Shi X, Bai X, Xie S. 2014. Shallow stratification prevailed for ~1700 to ~1300 ma ocean: evidence from organic carbon isotopes in the North China Craton[J]. Earth and Planetary Science Letters, 400: 219-232. DOI:10.1016/j.epsl.2014.05.020
Luo Qingyong, Zhong Ninging, Zhu Lei, Wang Yannian, Qin Jing, Qi Lin, Zhang Yi, Ma Yong. 2013. Correlation of burial organic carbon and paleoproductivity in the Mesoproterozoic Hongshuizhuang Formation, Northern North China[J]. Chinese Science Bulletin, 58: 1036-1047 (in Chinese). DOI:10.1360/csb2013-58-11-1036
Mei Mingxiang. 2007. Sequence-stratigraphic succession and its sedimentary features for the stromatolitic-nonstromatolitic carbonates of the Mesoproterozoic: An example from Gaoyuzhuang Formation at Qiangou Section in Yanqing County, Beijing[J]. Geoscience, 21(2): 387-396 (in Chinese with English abstract).
Niu Lu, Zhu Rukai, Wang Lisen, Bai Bin, Wang Tuo, Cui Jingang. 2015. Characteristics and evaluation of the Meso-Neoproterozoic shale gas reservoir in the northern North Chins[J]. Acta Petrolei Sinica, 36(6): 664-672 (in Chinese with English abstract).
Peng P, Liu F, Zhai M, Guo J. 2012. Age of the Miyun Dyke swarm: Constraints on the maximum depositional age of the Changcheng System[J]. Chinese Science Bulletin, 57(1): 105-110. DOI:10.1007/s11434-011-4771-x
She Min, Hu Anping, Wang Xin, Fu Xiaodong, Wang Yanqing, Xia Zhiyuan, Chen Wei. 2019. Thermocompression simulation of hydrocarbon generation and expulsion for lacustrine stromatolite and hydrocarbon generation potential of microbial carbonates[J]. Journal of China University of Petroleum, 43(1): 12-22 (in Chinese with English abstract).
Schröder S, Grotzinger J P, Amthor J E, Matter A. 2005. Carbonate deposition and hydrocarbon reservoir development at the Precambrian-Cambrian boundary: The Ara Group in South Oman[J]. Sedimentary Geology, 180(1/2): 1-28.
Shi Xiaoying, Zhang Chuanheng, Jiang Ganqing, Liu Juan, Wang Yi, Liu Dianbo. 2008a. Microbial mats from the Mesoproterozoic Carbonates of the North China platform and their potential for hydrocarbon-generation[J]. Geoscience, 22(5): 669-682 (in Chinese with English abstract).
Shi Xiaoying, Jiang Ganqing, Zhang Chuanheng, Liu Juan, Gao Linzhi. 2008b. Sand veins and microbially induced sedimentary structures from the black shale of the Mesoproterozoic Chuanlinggou Formation (ca. 1.7 Ga) in North China: Implications for methane degassing from microbial mats[J]. Earth Science-Journal of China University of Geosciences, 33(5): 577-590 (in Chinese with English abstract). DOI:10.3799/dqkx.2008.073
Su W B, Li H K., Huff W D, Ettensohn F R. 2010. SHRIMP U-Pb dating for a K-bentonite bed in the Tieling Formation, North China[J]. China Science Bulletin, 55: 3312-3323. DOI:10.1007/s11434-010-4007-5
Sun Shu, Wang Tieguan. 2016. Meso-Neoproterozoic Geology and Oil and Gas Resources in East China[M]. Beijing: Science Press (in Chinese).
Sun Huiyi, Gao Linzhi, Bao Chuang, Chen Yuelong, Liu Dunyi. 2013. SHRIMP zircon U-Pb of Mesoproterozoic Chuanlinggou Formation from Kuancheng County in Hebei Province and its geological implications[J]. Acta Geologica Sinica, 87(4): 591-596 (in Chinese with English abstract).
Sun Shufen. 2000. micropalaeofora of the Hongshuizhuang Formation Jixian System in Jixian Tianjin[J]. Progress in Precambrian Research, 23(3): 165-172 (in Chinese with English abstract).
Tang Dongjie, Shi Xiaoying, Liu Juan, Wang Xinqiang, Pei Yunpeng. 2009. Authigenic carbonate precipitation and pyrites from sand-veins in the Chuanlinggou Formation of the North China platform-evidence for anaerobic oxidation of methane in the Mesoproterozoic[J]. Journal of Palaeogeography, 11(4): 362-374 (in Chinese with English abstract).
Tang Dongjie, Shi Xiaoying, Zhang, Wenhao, Liu Yun, Wu Jingjian. 2017. Mesoproterozoic herringbone calcite from North China platform: Genesis and paleoenvironmental significance[J]. Journal of Palaeogeography, 19(2): 227-240 (in Chinese with English abstract).
Tian H, Zhang J, Li H, Xu Z. 2015. Zircon LA-MC-ICPMS U-Pb dating of tuff from Mesoproterozoic Gaoyuzhuang Formation in Jixian County of North China and its geological significance[J]. Acta Geoscientica Sinica, 36: 647-658.
Teng Jinbin, Shen Jianwei, Jin Chunhua. 2007. Relationship between microbial carbonates and hydrocarbon reserviors[J]. Natural Gas Geoscience, 18(4): 522-526 (in Chinese with English abstract).
Tissot B P, Welte D H. 1984. Petroleum Formation and Occurrence[J]. New York: Sringer-Verlag Berlin Heidelberg: 339-374.
Wang Hao, Ren Shoumai, Zhou Zhi, Wang Shengjian, Liu Yimin, Ge Mingna, Guo Tianxu, Hou Qidong, Jin Jihao. 2019. Oil and gas exploration status analysis of the Meso-Neoproterozoic strata in Yanshan area, North China[J]. Geological Bulletin of China, 38(2/3): 404-413 (in Chinese with English abstract).
Wang Hongzhen, Chu Xuchun, Liu Benpei, Hou Hongfei, Ma Lifang. 1985. Atlas of the Palaeogeography of China[M]. Beijing: SinoMaps Press (in Chinese).
Wang Kaiming, Luo Shunshe. 2014. Petrology and sedimentary environments of the Hongshuizhuang Formation in the Kuancheng region, Hebei[J]. Sedimentary Geology and Tethyan Geology, 34(2): 29-35 (in Chinese with English abstract).
Wang Lifeng, Li Buhuo. 1993. Sedimentary sequences and source beds in the Xiamaling Formation in Northwestern Hebei[J]. Sedimentary Faces and Palaeogeography, 13(4): 38-45 (in Chinese with English abstract).
Wang Jie, Chen Jianfa, Dou Qilong. 2004. Evaluation of the hydrocarbon-generating potential for the possible hydrocarbon source rocks of the Middle-Upper Proterozoic in North Huabei area[J]. Petroleum Geology & Experiment, 26(2): 206-211 (in Chinese with English abstract).
Wang Yue, Shen Jianwei, Yang Hongqiang, Wang Xu, Liu Miaomiao. 2011. Microbial carbonates and its research significance[J]. Advances in Earth Science, 26(10): 1038-1049 (in Chinese with English abstract).
Wang Zuodong, Liang Mingliang, Zheng Jianjing, Li Xiaobin, Li Zhongping, Qian Yu. 2013. Molecular fingerprint of source rocks of Xiamaling Formation of Meso-Neoproterozoic in North China[J]. Natural Gas Geoscience, 24(3): 599-603 (in Chinese with English abstract).
Wright P V, Racey A. 2009. Pre-salt Microbial Carbonate Reservoirs of the Santos Basin, offshore Brazil[R]. Denver: AAPG Annual Convention and Exhibition.
Xing Yusheng, Liu Guizhi, Qiao Xiufu, Wang Ziqiang, Quan Qiuqi. 1994. Stratigraphy of China: The Upper Precambrian in China[M]. Beijing: Geological Publishing House (in Chinese).
Yu Jiaren, Lei Huaiyu, Liu Chenhua. 1998. A discussion of factors influencing marine carbonate rock reservoir development: A case study of Wumishan Formation of Renqiu oilfield[J]. Marine Origin Petroleum Geology, 3(1): 39-48 (in Chinese with English abstract).
Zhang Dawei, Qiao dewu. 2013. Resources and Evaluation of National Oil and Gas Resources Strategic Constituency[M]. Beijing: Geological Publishing House (in Chinese).
Zhang Shuichang, Zhang Baomin, Bian Lizeng, Jin Zhijun, Wang Darui, Chen Jianfa. 2007. The Xiamaling oil shale generated through rhodophyta over 800 Ma ago[J]. Science in China Series D: Earth Sciences, 50: 527-535 (in Chinese with English abstract). DOI:10.1007/s11430-007-0012-1
Zhang Shuanhong, Zhao Y, Ye Hao, Hu Jianming, Wu Fei. 2013. New constraints on ages of the Chuanlinggou and Tuanshanzi Formations of the Changcheng System in the Yan-Liao Area in the Northern North China craton[J]. Acta Petrologica Sinica, 29: 2481-2490 (in Chinese with English abstract).
Zhang Shuichang, Wang Xiaomei, Hammarlund E U, Mafalda H, Costa M, Bjerrum C J, Connelly J N, Bao Min, Bian Lizeng, Canfield D E. 2015. Orbital forcing of climate 1. 4 Billion Years ago[J]. Proceedings of the National Academy of the Sciences of the United States of America, 112: 1406-1413.
Zhang Wenhao, Shi Xiaoying, Tang Dongjie, Wang Xinqiang. 2016. The characteristic and genetic interpretation of thrombolite in Mesoproterozoic Gaoyuzhuang Formation from Pingquan, Hebei Province[J]. Chinese Journal of Geology, 51(4): 1324-1343 (in Chinese with English abstract).
Zong Wenming, Gao Xiaoyong, Sun Qiushi, Jiang Xingchao, Wu Tong, Zhou Tiesuo. 2017. Evaluation of the hydrocarbon generating potential of the Jixian Hongshuizhuang Formation in Lingyuan-Ningcheng Basin, Northern China: A case study of Xiaozhuanghu geological profile[J]. Geology and Resources, 26(4): 370-376 (in Chinese with English abstract).
Zhao G C, Cawood P A, Wilde S A, Sun M. 2002. Review of global 2.1~1.8 Ga orogens: Implications for A Pre-Rodinia supercontinent[J]. Earth Science Review, 59(1/4): 125-162.
Zhao Wenzhi, Wang Xiaomei, Hu Suyun, Zhang Shuichang, Wang Huajian, Guan Shuwei, Ye Yuntao, Ren Rong, Wang Tongshan. 2019. Hydrocarbon generation characteristics and exploration prospects of Proterozoic source rocks in China[J]. Science China Earth Sciences, 62: 909-934. DOI:10.1007/s11430-018-9312-4
Zhao Wenzhi, Hu Suyun, Liu Wei, Wang Tongshan, Li Yongxin. 2014. Petroleum geological features and exploration prospect in deep marine carbonate strata onshore China: A further discussion[J]. Natural Gas Industry, 34(4): 1-9 (in Chinese with English abstract).
Zhong Ningning, Qin Yong. 1995. Organic Petrology of Carbonate Rocks[M]. Beijing: Science Press.
Zhu Shixing, Xing Yusheng, Zhang Pengyuan, Du Rulin, Yan Yuzhong. 1994. Middle-Upper Proterozoic on North China Platform[M]. Beijing: Geological Publishing House (in Chinese with English abstract).
鲍志东陈践发, 张水昌, 赵洪文, 张清海, 李燕. 2004. 北华北中上元古界烃源岩发育环境及其控制因素[J]. 中国科学: 地球科学, 34(S1): 1141-1199.
陈晋镳, 张鹏远, 高振家. 1999. 中国地层典: 中元古界[M]. 北京: 地质出版社.
陈丕济. 1985. 碳酸盐岩生油地化中几个问题的评述[J]. 石油实验地质, 7(1): 3-12.
段超, 李延河, 魏明辉, 杨云, 侯可军, 陈小丹, 邹斌. 2014. 河北宣化姜家寨铁矿床串岭沟组底部碎屑锆石LA-MC-ICP-MS U-Pb年龄及其地质意义[J]. 岩石学报, 30(1): 35-48.
方杰, 刘宝泉, 金凤鸣, 刘敬强, 鱼占文. 2002. 华北北部中、上元古界生烃潜力与勘探前景分析[J]. 石油学报, 23(4): 18-23.
傅家谟, 刘德汉. 1982. 碳酸盐岩有机质热演化特征及油气评价[J]. 石油学报, 1: 1-9.
高林志, 张传恒, 史晓颖, 宋彪, 王自强, 刘耀明. 2008a. 华北古陆下马岭组归属中元古界的锆石SHRIMP年龄新证据[J]. 科学通报, 53(21): 2617-2623.
高林志, 张传恒, 尹崇玉, 史晓颖, 王自强, 刘耀明, 刘鹏举, 唐烽, 宋彪. 2008b. 华北古陆中、新元古代年代地层框架SHRIMP锆石年龄新依据[J]. 地球学报, 29(3): 366-376.
高林志, 张传恒, 刘鹏举, 丁孝忠, 王自强, 张彦杰. 2009. 华北-江南地区中、新元古代地层格架的再认识[J]. 地球学报, 30(4): 433-446. DOI:10.3321/j.issn:1006-3021.2009.04.004
郝石生, 高耀斌, 张有成. 1990. 华北北部中-上元古界石油地质学[M]. 东营: 中国石油大学出版社.
李国玉. 2006. 从东西伯利亚古老地层看中国震旦系含油气前景[J]. 海相油气地质, 11(3): 1-3.
刘宝泉, 秦建中, 李欣. 2000. 冀北坳陷中-上元古界烃源岩特征及油苗、油源分析[J]. 海相油气地质, 5(1/2): 35-46.
李怀坤, 朱士兴, 相振群, 苏文博, 陆松年, 周红英, 耿建珍, 李生, 杨锋杰. 2010. 北京延庆高于庄组凝灰岩的锆石U-Pb定年研究及其对华北北部中元古界划分新方案的进一步约束[J]. 岩石学报, 26(7): 2131-2140.
李怀坤, 苏文博, 周红英, 耿建珍, 相振群, 崔玉荣, 刘文灿, 陆松年. 2011. 华北克拉通北部长城系底界年龄小于1670 Ma: 来自北京密云花岗斑岩岩脉锆石LA-MC-ICPMS U-Pb年龄的约束[J]. 地学前缘, 18(3): 108-120.
刘岩, 钟宁宁, 宋涛, 田永晶, 韩辉, 何欣. 2011. 海相油页岩的生烃动力学特征——以燕山地区下马岭组油页岩为例[J]. 吉林大学学报(地球科学版), 41(1): 78-84.
罗情勇, 钟宁宁, 朱雷, 王延年, 秦婧, 齐琳, 张毅, 马勇. 2013. 华北北部中元古界洪水庄组埋藏有机碳与古生产力的相关性[J]. 科学通报, 58: 1036-1047.
梅冥相. 2007. 中元古代叠层石-非叠层石碳酸盐岩层序地层序列及其沉积特征——以北京延庆千沟剖面高于庄组为例[J]. 现代地质, 21(2): 387-396. DOI:10.3969/j.issn.1000-8527.2007.02.024
牛露, 朱如凯, 王莉森, 白斌, 王拓, 崔金钢. 2015. 华北地区北部中-上元古界泥页岩储层特征及页岩气资源潜力[J]. 石油学报, 36(6): 664-672.
佘敏, 胡安平, 王鑫, 付小东, 王艳清, 夏志远, 陈薇. 2019. 湖湘叠层石生排烃模拟及微生物碳酸盐岩生烃潜力[J]. 中国石油大学学报(自然科学版), 43(1): 12-22. DOI:10.3969/j.issn.1673-5005.2019.01.002
史晓颖, 张传恒, 蒋干清, 刘娟, 王议, 刘典波. 2008a. 华北地台中元古代碳酸盐岩中的微生物成因构造及其生烃潜力[J]. 现代地质, 22(5): 669-682.
史晓颖, 蒋干清, 张传恒, 刘娟, 高林志. 2008b. 华北地台中元古代串岭沟组页岩中的砂脉构造: 17亿年前甲烷气逃逸的沉积标识?[J]. 地球科学, 33(5): 577-590.
孙枢, 王铁冠. 2016. 中国东部中-新元古界地质学与油气资源[M]. 北京: 科学出版社.
孙会一, 高林志, 包创, 陈岳龙, 刘敦一. 2013. 河北宽城中元古代串岭沟组凝灰岩SHRIMP锆石U-Pb年龄及其地质意义[J]. 地质学报, 87(4): 591-596.
孙淑芬. 2000. 天津蓟县洪水庄组微古植物群[J]. 前寒武纪研究进展, 23(3): 165-172.
汤冬杰, 史晓颖, 刘娟, 王新强, 裴云鹏. 2009. 华北地台串岭沟组砂脉中自生碳酸盐沉淀和自生黄铁矿——中元古代甲烷厌氧氧化的沉积证据[J]. 古地理学报, 11(4): 362-374.
汤冬杰, 史晓颖, 张文浩, 刘云, 吴金键. 2017. 华北中元古代鱼骨状方解石: 成因机制和古环境意义[J]. 古地理学报, 19(2): 227-240.
滕建彬, 沈建伟, 金春花. 2007. 微生物碳酸盐地层与油气成藏[J]. 天然气地球科学, 18(4): 522-526. DOI:10.3969/j.issn.1672-1926.2007.04.007
王浩, 任收麦, 周志, 王胜建, 刘一珉, 葛明娜, 郭天旭, 侯啓东, 金继浩. 2019. 华北燕山地区中-新元古界油气勘查形势[J]. 地质通报, 38(2/3): 404-413.
王鸿祯, 楚旭春, 刘本培, 侯鸿飞, 马丽芳. 1985. 中国古地理图集[M]. 北京: 地图出版社.
汪凯明, 罗顺社. 2014. 河北宽城地区洪水庄组岩石特征及沉积环境[J]. 沉积与特提斯地质, 34(2): 29-35.
王立峰, 李不惑. 1993. 冀西北下马岭组沉积层序分析及生油层[J]. 岩相古地理, 13(4): 38-45.
王杰, 陈践发, 窦启龙. 2004. 华北北部中、上元古界生烃潜力特征研究[J]. 石油实验地质, 26(2): 206-211. DOI:10.3969/j.issn.1001-6112.2004.02.014
王月, 沈建伟, 杨红强, 王旭, 刘苗苗. 2011. 微生物碳酸盐沉积及其研究意义[J]. 地球科学进展, 26(10): 1038-1049.
王作栋, 梁明亮, 郑建京, 李晓斌, 李中平, 钱宇. 2013. 华北中-上元古界下马岭组烃源岩分子指纹特征[J]. 天然气地球科学, 24(3): 599-603.
邢裕盛, 刘桂芝, 乔秀夫, 王自强, 全秋其. 1989. 中国地层: 中国的上前寒武系[M]. 北京: 地质出版.
余家仁, 雷怀玉, 刘趁花. 1998. 试论海相碳酸盐岩储层发育的影响因素: 以任丘油田雾迷山组为例[J]. 海相油气地质, 3(1): 39-48.
赵文智, 王晓梅, 胡素云, 张水昌, 王华建, 管树巍, 叶云涛, 任荣, 王铜山. 2019. 中国元古宇烃源岩成烃特征及勘探前景[J]. 中国科学: 地球科学, 49: 939-964.
赵文智, 胡素云, 刘伟, 刘伟, 王铜山, 李永新. 2014. 再论中国陆上深层海相碳酸盐岩油气地质特征与勘探前景石[J]. 天然气工业, 34(4): 1-9.
张大伟, 乔德武. 2013. 全国油气资源战略选区资源与评价[M]. 北京: 地质出版社.
张水昌, 张宝民, 边立曾, 金之钧, 王大锐, 陈践发. 2007. 8亿多年前由红藻堆积而成的下马岭组油页岩[J]. 中国科学: 地球科学, 37(5): 636-643.
宗文明, 郜晓勇, 孙求实, 蒋兴超, 吴桐, 周铁锁. 2017. 华北北部凌源-宁城盆地蓟县系洪水庄组生烃潜力分析——以小庄户剖面为例[J]. 地质与资源, 26(4): 370-376. DOI:10.3969/j.issn.1671-1947.2017.04.007
张拴宏, 赵越, 叶浩, 胡健民, 吴飞. 2013. 燕辽地区长城系串岭沟组及团山子组沉积时代的新制约[J]. 岩石学报, 29: 2481-2490.
张文浩, 史晓颖, 汤冬杰, 王新强. 2016. 河北平泉高于庄组凝块石的特征及其成因解析[J]. 地质科学, 51(4): 1324-1343.
钟宁宁, 秦勇. 1995. 碳酸盐岩有机岩石学[M]. 北京: 科学出版社.
朱士兴, 邢裕盛, 张鹏远, 杜汝霖, 阎玉忠. 1994. 华北地台中、上元古界生物地层序列[M]. 北京: 地质出版社.