文章快速检索    
 
  中国地质 2021, Vol. 48 Issue (5): 1524-1539  
0
引用本文
李宏卫, 屈尚侠, 林小明, 肖光铭, 黄建桦, 廖冰冰. 2021. 广东新丰新坪花岗闪长岩(104 Ma)地球化学、锆石U-Pb年龄和Hf同位素研究[J]. 中国地质, 48(5): 1524-1539.  
Li Hongwei, Qu Shangxia, Lin Xiaoming, Xiao Guangming, Huang Jianhua, Liao Bingbing. 2021. Petrogeochemistry, zircon U-Pb age and Hf isotope of Xinping granodiorite(104Ma) in Xinfeng area, Guangdong Province[J]. Geology in China, 48(5): 1524-1539. (in Chinese with English abstract).  

广东新丰新坪花岗闪长岩(104 Ma)地球化学、锆石U-Pb年龄和Hf同位素研究
李宏卫1, 屈尚侠2, 林小明1, 肖光铭1, 黄建桦1, 廖冰冰3    
1. 广东省地质调查院, 广东 广州 510080;
2. 广州市地质调查院, 广东 广州 510440;
3. 广东省地质实验测试中心, 广东 广州 510080
摘要:新坪铜钼矿化花岗闪长岩体位于佛冈复式岩体中北部,LA-ICP-MS锆石U-Pb年龄为(104.6±1.8)Ma(MSWD=1.2),侵位时间为早白垩世晚期。岩石呈中酸性(SiO2=63.43%~65.27%)、准铝质(ACNK=0.76~0.92)、中等碱含量(ALK=6.09%~7.63%)和富钾钙碱性特征,富集轻稀土,LREE/HREE=8.26~13.20,(La/Yb)N=8.17~16.64,轻微的铕亏损(δEu=0.73~0.87),富集Rb、U、Th和La,亏损Nb、Ta、Ti和P、Ba、Sr。锆石εHft)值为-3.0~0.2,Hf二阶段模式年龄tDM2=1.16~1.36Ga,镁指数(Mg#)=42.64~46.95,表明源岩主要为中元古代地壳物质,并有亏损地幔组分的参与。Nb/U和Nb/La比值分别为0.20~0.38和1.7~2.2,显示源区受古太平洋板块俯冲流体交代作用的影响。研究表明,新坪岩体成岩过程主要受部分熔融作用控制,形成于燕山晚期古太平洋板片俯冲消减作用下的伸展拉张环境,与玄武质岩浆底垫诱发中元古代结晶基底的部分熔融有关。早白垩世晚期为中国东南部晚中生代重要的Cu-Au-Mo成矿期,位于南岭中东段的新坪花岗闪长岩体与邻区闽西南紫金山铜多金属岩(矿)体形成时代一致、岩石地球化学特征较为相似,且野外能观察到明显的铜钼矿化,因此具有较好的铜钼找矿前景。
关键词花岗闪长岩    铜钼矿化    U-Pb年龄    地球化学    Hf同位素    矿产资源调查工程    新丰    广东    
中图分类号:P588.12            文献标志码:A             文章编号:1000-3657(2021)05-1524-16
Petrogeochemistry, zircon U-Pb age and Hf isotope of Xinping granodiorite(104Ma) in Xinfeng area, Guangdong Province
LI Hongwei1, QU Shangxia2, LIN Xiaoming1, XIAO Guangming1, HUANG Jianhua1, LIAO Bingbing3    
1. Guangdong Geological Survey, Guangzhou 510080, Guangdong, China;
2. Geological Survey Institute of Guanghzou, Guangzhou 510440, Guangdong, China;
3. Guangdong Geological Experiment and Testing Center, Guangzhou 510080, Guangdong, China
Abstract: Located in the north-central part of the Fogang complex pluton, the Xinping Cu-Mo mineralization granodiorite pluton formed in late Early Cretaceous, and its LA-ICP-MS zircon U-Pb age is (104.6±1.8)Ma(MSWD=1.2). The granodiorite is characterized by medium acidity (SiO2=63.43%-65.27%), quasi-aluminium(ACNK=0.76-0.92), medium alkali(ALK=6.09%-7.63%) and high-K Calc-alkaline. It shows enrichment in light rare earth elements Rb, U, Th and La, and the ratio of LREE/HREE is 8.26-13.20 while (La/Yb)N is 8.17-16.64. Otherwise, it shows depletion in Nb, Ta, Ti, P, Ba and Sr, with minor loss of Eu (δEu=0.73-0.87). The εHf(t) range from -3.0 to +0.2, and the two-stage model age of Hf(tDM2) is 1.16-1.36Ga, and the index of Mg(Mg#) is 42.64-46.95. All of these indicate that the source rocks are mainly crustal materials formed in Mesoproterozoic, with the participation of deficient mantle components. The ratio of Nb/U and Nb/La is respectively 0.20-0.38 and 1.7-2.2, which indicates that the source area is affected by the fluid metasomatism in subduction of Paleo-Pacific Plate. This study shows that the Xinping granodiorite is dominated by partial melting in process of diageneesis. The Xinping pluton formed in the extensional setting under the subduction of the Paleo-Pacific plate in late Yanshanian period, which is related to the partial melting of the Mesoproterozoic crystalline basement induced by the basaltic magma. In late Early Cretaceous, it was an important Cu-Au-Mo mineralization period in late Mesozoic in southeastern China, while the Xinping granodiorite, located in the middle east of Nanling mountains, coincide with the diagenetic age of the Zijinshan copper polymetallic rocks or ores in the southwestern Fujian Province, with similar petrochemical characteristics. Also, the obvious copper-molybdenum mineralization can be observed in the field, so it will have a good prospecting prospect for copper-molybdenum deposits.
Key words: granodiorite    Cu-Mo mineralization    U-Pb age    geochemistry    Hf isotope    mineral survey engineering    Xinfeng    Guangdong    

1 引言

南岭主要由3条近EW向花岗岩山岭组成,区域地质演化历史复杂,受古太平洋和特提斯两大构造域联合制约,以多幕式构造-岩浆活动及多期“成矿大爆发”为主要特色,历来为地质学界所重视。广东佛冈复式岩体是南岭花岗岩南带(佛冈—新丰江花岗岩带)的重要组成部分,出露面积为5000~6000 km2,呈近东西走向(陈小明等,2002徐夕生等,2007),主体岩性为晚侏罗世早期中粗粒斑状黑云母花岗岩、中粗粒黑云母二长花岗岩,其次为晚侏罗世晚期铝质碱长花岗岩、早白垩世早期方钠石正长岩和晚白垩世早期花岗斑岩、细粒二长花岗岩,局部出露含角闪石的花岗闪长岩、闪长岩和辉长岩(包志伟等,2003)(图 1)。此外,在佛冈岩体内部或与地层接触带附近,产出有大量的W、Sn、Cu、Pb、Zn等金属矿床(点)及花岗岩型“三稀”矿床和铀矿床(赵正等,2014王登红等,2014)。

图 1 佛冈复式岩体及新坪岩体地质简图(底图据孙涛, 2006; 徐夕生等, 2007修改; 岩体U-Pb年龄数据来源陈江峰等, 1991; 邱检生等, 1999; 高剑锋等, 2005; 刘昌实等, 2005; Li et al., 2007; 陈富文等, 2008; 李艳军等, 2009; 林清茶等, 2011; 邱检生等, 2012; Chen et al., 2013; 杨金豹等, 2013; 郭海浩等, 2014; 杨振等, 2014; 苏扣林等, 2015; Duan et al., 2017; 贾丽辉, 2018) a—华南燕山期花岗岩及早白垩世晚期(100~110 Ma)岩体分布图;b—佛冈复式岩体花岗岩分布图;c—新坪岩体地质简图 Fig. 1 Sketch geological map of the Fogang composite pluton and Xinping granodiorite pluton (modified from Sun Tao, 2006, Xu Xisheng et al., 2007; Age data of pluton from Chen Jiangfeng et al., 1991; Qiu Jiansheng et al., 1999; Gao Jianfeng et al., 2005; Liu Changshi et al., 2005; Li et al., 2007; Chen Fuwen et al., 2008; Li Yanjun et al., 2009; Lin Qingcha et al., 2011; Qiu Jiansheng et al., 2012; Chen et al., 2013; Yang Jinbao et al., 2013; Guo Haihao et al., 2014; Yang Zhen et al., 2014; Su Koulin et al., 2015; Duan et al., 2017; Jia Lihui, 2018) a-Distribution map of Yanshanian granites and Late period of Early Cretaceous (100-110Ma) plutons in South China; b-Distribution map of Granites in Fogang composite pluton; c-Sketch geological map of Xinping pluton

目前,有关佛冈岩体的岩石类型判别存在较多分歧(庄文明等,2000包志伟等,2003徐夕生等,2007陈璟元等,2015)。但可以确定的是,它源自地壳的部分熔融,并经历了不同程度的地幔物质参与(Zhou et al., 2006)。佛冈复式岩体成岩演化晚期岩性主要为壳幔混源A型花岗岩(南昆山岩体)和幔源碱性岩(石岭杂岩体)(苏扣林等,2015),表明区域地壳自中侏罗世以来不断伸展拉张,幔源岩浆作用逐渐增强,经历了早期的板内岩浆活动阶段和晚期陆缘弧岩浆活动阶段(Zhou et al., 2006)。

本文报道的新坪铜钼矿化花岗闪长岩体,LAICP-MS锆石U-Pb年龄为(104.6±1.8)Ma,成岩时代属早白垩世晚期。这一时期的花岗闪长岩主要见于粤东及浙闽沿海一带(图 1a),研究程度较高,而在南岭地区较为稀少,整个中国东南内陆地区仅零星出露,因此新坪花岗闪长岩包含有重要的成岩成矿信息。文章结合区域地质及岩石学特征,重点开展了岩石地球化学、锆石年代学以及Hf同位素研究,旨在探讨岩石成因及其形成构造背景,进一步理解佛冈复式岩体演化至早白垩世晚期阶段的成岩成矿过程。

2 岩体地质与岩石学

新坪岩体位于佛冈复式岩体中北部(图 1b),距新丰县城约20 km,呈南北带状展布,出露面积约24.2 km2,岩性为中细粒黑云母花岗闪长岩,局部为石英闪长岩,整体呈青灰、灰白、灰黑色。该侵入体与佛冈岩体主体岩性——晚侏罗世(~160 Ma)粗中粒黑云母二长花岗岩呈侵入接触,并被晚白垩世(~95 Ma)细粒二长花岗岩侵入。岩石碎裂断口呈参差状,易风化,常造成路基破坏或局部半风化岩土质高边坡崩塌。在双门顿一带,花岗闪长岩中发育硅化、黄铁矿化网脉,并见浸染状辉钼矿化,化探异常揭示具有较好的铜钼矿找矿前景。本次研究对象为主体岩性花岗闪长岩,用于锆石U-Pb定年的样品(Dy017)地理坐标:N24°5′30″,E114°3′20″。

样品具半自形粒状结构、块状构造,主要矿物组合为斜长石(~50%)+钾长石(~10%)+石英(~22%)+黑云母(~13%),次要矿物含量约5%,见少量角闪石(图 2)。长石类矿物为半自形板状,粒径0.5~5 mm,钠长石见聚片双晶及卡钠复合双晶,钾长石见卡式双晶,斜长石见聚片双晶和环带构造,弱绢云母化;石英呈它形粒状,粒径0.35~2.5 mm,常见波状消光;黑云母片径0.3~2 mm,呈褐色—浅黄褐色,弱绿泥石化;角闪石呈半自形—他形柱状、粒状,粒径0.35~1.2 mm,浅绿—深绿色。副矿物组合类型为绿帘石-锆石-褐帘石型,磁铁矿远多于钛铁矿。

图 2 新坪花岗闪长岩的岩相学显微照片(左:正交偏光;右:单偏光) Hb—角闪石;Kf—钾长石;Pl—斜长石;Qz—石英;Bi—黑云母 Fig. 2 Microphotographs of the Xinping granodiorite(Left: crossed polarizer; Right: single polarizer) Hb-Hornblende; Kf-Potassium feldspar; Pl-Plagioclase; Qz-Quartz; Bi-Biotite
3 测试方法

锆石挑选由河北省区域地质矿产调查研究所实验室完成,锆石制靶和阴极发光(CL)照相在北京锆年领航科技有限公司完成。锆石U-Pb同位素测试由合肥工业大学资源与环境工程学院激光剥蚀电感耦合等离子体质谱仪(LA-ICP-MS)完成,剥蚀直径采用32 μm。数据处理采用ICPMS Data Cal (Liu et al., 2008Liu et al., 2010aLiu et al., 2010b)和Isoplot/Ex_ver3 (Andersen,2002)软件。普通Pb采用ComPbCorr#3.18程序(Ludwig,2003)校正。标准锆石91500的U-Th-Pb同位素比值采用Wiedenbeck et al.(1995)推荐值,监控样标准锆石206Pb/238U年龄采用Plesovice (Sláma et al., 2008)推荐值: (337.13±0.37)Ma (2σ)。样品LA-ICP-MS锆石U-Pb同位素测试结果见表 1

表 1 新坪花岗闪长岩LA-ICP-MS锆石U-Pb测试结果 Table 1 LA-ICP-MS zircon U-Pb dating results of the Xinping granodiorite

锆石Hf同位素测试是在北京科荟测试技术有限公司Neptune plus多接收等离子质谱及配套的ESI NWR193紫外激光剥蚀系统(LA-MC-ICPMS)上进行的,采用He作为剥蚀物质载气,剥蚀直径采用40 μm。仪器运行条件及详细流程见文献(Wu et al., 2006侯可军等,2007)。分析过程中锆石标准GJ1的176Hf/177Hf测试加权平均值分别为0.282007±0.000007 (2σn=36),与文献报道值(Morel et al., 2008)在误差范围内完全一致。锆石Hf同位素分析结果见表 2

表 2 新坪花岗闪长岩体锆石Hf同位素分析结果 Table 2 Zircon Hf isotopic compositions of the Xinping granodiorite pluton

岩石地球化学分析在河北省区域地质矿产查研究所实验室完成。主量元素检测仪器为AxiosmaxX射线荧光光谱仪,烧失量、H2O-等采用电子分析天平称重法,微量元素采用X Serise 2等离子体质谱仪检测。样品地球化学分析数据及相关参数见表 3

表 3 新坪花岗闪长岩主量元素(%)及微量、稀土元素(10-6)分析结果 Table 3 Major element (%), trace and rare earth (10-6) analyses of the Xinping granodiorite
4 测试结果 4.1 锆石U-Pb定年与Hf同位素

锆石U-Pb定年样品中锆石呈黄色、透明—半透明,自形—半自形双锥柱状,长宽比为1∶1至5∶1,颗粒大小为100~370 μm,锆石U和Th分别为349.93×10-6~764.85×10-6和187.02×10-6~734.89×10-6,Th/U值(0.51~0.74)大于0.5,CL图像显示锆石发育典型的震荡环带,表明为岩浆成因锆石(Hoskin et al., 2000吴元保等,2004)。参考透射光和反射光成像,避开锆石包裹体、核部及裂纹,在震荡环带部位进行激光剥蚀定年和Hf同位素测定。由于普通Pb的校正,年轻锆石采用206Pb/238U年龄(Griffin et al., 2004)。分析点01、07、16、18年龄谐和度小于90%需舍弃,其余16个分析点数据位于谐和曲线附近,且较为集中,锆石206Pb/238U年龄为99.23~111.4 Ma,加权平均年龄值为(104.6±1.8) Ma (MSWD=1.2),解释为新坪花岗闪长岩体的侵位年龄(图 3)。

图 3 新坪岩体花岗闪长岩样品(Dy017)锆石代表性阴极发光(CL)图像和锆石U-Pb年龄谐和图 阴极发光(CL)图像中:实线圆圈代表U-Pb分析点,虚线圆圈代表相应的Hf同位素分析点 Fig. 3 Cathodoluminescence (CL) images of representative zircons in sample (Dy017) and concordia diagrams of LA-ICP-MS zircon U-Pb data from the Xinping granodiorite pluton The solid circles represent the analysis spots of U-Pb and dotted circles represent the analysis spots of corresponding Hf isotope in the cathodoluminescence (CL) images

对新坪花岗闪长岩(Dy017)12粒锆石进行了12次Lu-Hf同位素分析,分析点均位于新生岩浆锆石的震荡环带内,部分锆石Hf同位素测试点位置见图 3。被测锆石的176Yb/177Hf=0.020164~0.053720,176Lu/177Hf=0.000645~0.001416,176Hf/177Hf=0.282624~0.282712,锆石176Lu/177Hf值很小(< 0.002),表明锆石形成之后很少有放射性Hf的积累,因而可以用初始176Hf/177Hf比值代表锆石形成时的176Hf/177Hf。以t=104 Ma计算的εHf(t)值为-3.0~0.2,绝大多数为负值。在t-εHf(t)关系图(图 4)上,样品点均落在南岭地区前寒武纪地壳演化域之上,且位于球粒陨石均一储库(CHUR)附近。

图 4 新坪花岗闪长岩t-εHf (t) 关系图 Fig. 4 t-εHf (t) diagram of the Xinping granodiorite
4.2 岩石地球化学特征

新坪花岗闪长岩主量元素具有以下特征:(1)偏酸性,SiO2变化范围较小,含量为63.43%~65.27%;(2)碱含量中等,ALK=6.09%~7.63%,在SiO2-(K2O+Na2O)关系图(图 5a)上,样品投点在亚碱性系列的花岗闪长岩区,与岩石矿物定名结果相一致。碱度率指数(A.R.)=1.89~2.28,在SiO2-碱度率(A.R)关系图(图 5b)上,样品落在钙碱性区。里特曼指数(σ)为1.67~2.85,均值2.13,属钙碱性岩;(3)相对富钾,K2O=3.55%~4.34%,Na2O=2.53%~3.29%,K2O/Na2O=1.32~1.65,在SiO2-K2O关系图上,样品主要落在高钾钙碱性系列范围(图 5c);(4)具准铝质特征,Al2O3=15.11%~15.97%,铝饱和指数(A/CNK)和碱铝指数(A/NK)值分别为0.76~0.92和1.56~1.88,在A/CNK-A/NK关系图上,样品均落在亚碱准铝质区域(图 5d);(5)FeOT、MgO、CaO氧化物含量相对较高,分别为4.32%~4.84%、1.81%~2.3%和3.43%~4.61%,镁指数Mg#为42.64~46.95。

图 5 新坪花岗闪长岩主量元素判别图 a—TAS分类图解(底图据Middlemost, 1994); b—SiO2-A.R.图解; c—K2O-SiO2图解(底图据Peccerillo et al., 1976); d—A/NK-A/CNK图解 Fig. 5 Plots of major element compositions of Xinping granodiorite a-Total alkalis vs. silica(after Middlemost, 1994); b-Silica vs. A.R.; c-Potassium vs. silica(after Peccerillo et al., 1976); d-A/NK vs. A/CNK

岩石稀土元素总量中等,ΣREE=150.73×10-6~212.99×10-6;富集轻稀土,LREE/HREE=8.26~13.20,(La/Yb)N=8.17~16.64,轻稀土分馏程度大于重稀土,(La/Sm)N=3.87~6.49,(Gd/Yb)N=1.45~1.81;岩石稀土元素球粒陨石标准化配分曲线呈明显的右倾斜型(图 6a),轻微的铕负异常(δEu=0.73~0.87),与典型的S型花岗岩“海鸥型”稀土配分形式(徐克勤等, 1989)有较明显差别。Sr含量中等,变化范围为288×10-6~542.88×10-6(1个样品Sr < 400×10-6),Y和Yb含量中等偏低,Y=17.84×10-6~21.82×10-6(均值19.64×10-6),Yb=1.87×10-6~2.7×10-6(均值2.27×10-6);具较低的相容元素含量,Cr=18.4×10-6~29.2×10-6,Ni=5.34×10-6~9.86×10-6,V=84×10-6~123.8×10-6。微量元素原始地幔标准化蛛丝图显示,高场强元素Nb、Ta、Zr、Ti相对亏损,Rb、U、Th和La、Hf相对富集,Ba相对于Rb和Th亏损(图 6b)。富集大离子亲石元素和轻稀土、亏损高场强元素,指示新坪花岗闪长岩应属于地壳来源。

图 6 新坪花岗闪长岩稀土元素球粒陨石标准化配分曲线(a, 标准化值据Taylor et al., 1985)和微量元素原始地幔标准化蛛丝图(b, 标准化值据Sun et al., 1989) Fig. 6 Diagrams of chondrite-normalized rare earth elements (a, the normalized values after Taylor et al., 1985) and Primitive mantle-normalized trace elements spidergrams(b, the normalized values after Sun et al., 1989) of the Xinping granodiorite pluton
5 讨论 5.1 岩石成因与源区性质

新坪花岗闪长岩A/CNK < 1(=0.76~0.92),具准铝质特征。K2O/Na2O平均值为1.45,低于华南S型花岗岩平均值1.61(高剑锋等, 2005)。在岩石类型判别K2O-Na2O图解(图 7a)中,样品落在Ⅰ型花岗岩区域;并且样品P2O5与SiO2呈负线性关系(图 7b),岩石中常见角闪石等暗色矿物,表明其岩石类型为Ⅰ型花岗岩(Chappell et al., 1992; Wolf et al., 1994)。

图 7 新坪花岗闪长岩K2O-Na2O(a)和SiO2-P2O5(b)图 Fig. 7 Discrimination diagrams of K2O-Na2O(a) and SiO2-P2O5(b) for the Xinping granodiorite pluton

Ⅰ型花岗岩通常具有相对较低的FeOT/MgO、Rb/Sr比值和(Zr+Nb+Ce+Y)含量,以及相对中等的成岩温度。新坪花岗闪长岩FeOT/MgO=1.92~2.27,Rb/Sr=0.31~0.63,Zr+Nb+Ce+Y=220×10-6~263×10-6,均低于A型花岗岩平均值(相应值分别为13.4,350× 10-6和3.52, Whalen et al., 1987);锆石饱和温度计(Watson et al., 1983)计算出的新坪闪长岩体成岩温度(tZr)为755~802℃,平均值为781℃(n=5),显著低于A型花岗岩(=883℃,刘昌实等,2003),略高于S型花岗岩(=764℃,King et al., 1997),与前人统计的Ⅰ型花岗岩(=781℃,King et al., 1997)相一致。

前人研究表明,Ⅰ型花岗岩类主要有3种可能成因:地壳岩石的部分熔融(Chung et al., 2003)、交代岩石圈地幔低程度部分熔融(Jiang et al., 2006)以及长英质-玄武质混浆作用(Streck et al., 2007Danyushevsky et al., 2008)。笔者认为新坪岩体Ⅰ型花岗闪长岩主要源于地壳岩石的部分熔融,这是因为:(1)交代岩石圈地幔经部分熔融一般形成钾玄质成分的岩浆(徐克勤等, 1989),而新坪岩体的高钾钙碱性特征,暗示其成因与交代岩石圈地幔无关。另外,岩石Sr含量中等,Ba相对于原始地幔亏损,与俯冲流体交代造成富集地幔起源的岩浆富集Ba、Sr等特征恰恰相反;(2)新坪花岗闪长岩中未见镁铁质暗色微粒包体(MME),且Hf同位素εHf(t)变化范围较小,表明不可能由岩浆混合作用形成。

新坪花岗闪长岩富硅、富钾,属于高钾钙碱性系列,亏损高场强元素Nb、Ta,富集大离子亲石元素和轻稀土元素,指示与大陆地壳物质具有明显的亲缘性。岩石Nb/Ta=5.97~13.75,平均值为10.67,接近大陆地壳Nb/Ta比值(=10~14)。而MgO-SiO2(图 8a)和Ni-Mg#图(图 8b)显示新坪岩体源于下地壳物质的熔融作用,这与岩石副矿物特征所反映的结果相一致。新坪花岗闪长岩中副矿物含量较高(4735×10-6~6580×10-6),且种类较少,以磁铁矿(4658×10-6~6164×10-6)、榍石为主,少见钛铁矿,相当于华南花岗岩以下地壳为主要物质来源的成岩系列(张绍立等, 1983)。岩石δEu=0.73~0.87,指示在成岩过程中发生了斜长石的分离结晶或岩浆源区有斜长石残留;Y/Yb=7.96~9.53(均值8.65),(Ho/Yb)N=0.85~0.95(均值0.91),重稀土(Ho-Lu)曲线相对平坦,表明岩浆源区残留相主要为角闪石(葛小月等, 2002);亏损Nb、Ta、P和Ti,可能与磷灰石、榍石和Fe-Ti氧化物等残留在源区有关。

图 8 新坪花岗闪长岩MgO-SiO2图(a)和Ni-Mg#图(b) (底图数据来源:a, 据Hou et al., 2004; Zhu et al., 2009; b, 据Guo et al., 2012 Fig. 8 Discrimination diagrams of MgO-SiO2(a) and Ni-Mg#(b) for the Xinping granodiorite (Date sources: a, after Hou et al., 2004; Zhu et al., 2009; b, after Guo et al., 2012)

新坪花岗闪长岩锆石Hf二阶段模式年龄(tDM2) 集中1.16~1.36 Ga,εHf(t)大部分为负值(-3.0~0.2),表明其可能主要来源于中元古代结晶基底的熔融。Gilder et al.(1996)对华南中生代花岗岩进行了SrNd同位素分析,证实了华南地区存在广泛的中元古代地壳。在扬子地块南部和华夏地块的武夷山、南岭和云开等地区的新元古代沉积岩中也发现相当数量的1.3~1.4 Ga的碎屑锆石,且为正εHf(t)值和较年轻二阶段模式年龄,说明在华南板块东南部存在增生的中元古代地壳(Yu et al., 2008Yu et al., 2010Wang et al., 2010),这些中元古代地壳为燕山晚期岩浆岩提供了重要的物质来源。李献华等(1991)统计前人数据,发现华南地壳主要有大于2.5 Ga、1.8 Ga和1.2~1.4 Ga三期幕式增长,而新坪岩体源区对应于最后一期华南地壳的幕式生长。

实验岩石学研究表明,玄武质下地壳发生部分熔融产生的熔体,不管熔融程度如何,均具有低Mg#值(< 40)特征,然而在地幔组分参与时,才能导致熔体的Mg#值大于40(Rapp et al., 1995)。新坪花岗闪长岩具较高的MgO含量,Mg#=42.64~46.95,表明必须有幔源组分参与成岩过程。锆石Hf同位素特征同样支持这一观点,新坪花岗闪长岩样品投点位于南岭前寒武纪地壳演化域之上,靠近球粒陨石均一储库(CHUR)附近(图 4),且一颗锆石εHf(t)为正值,暗示其成岩过程必须有亏损地幔物质的加入。

Nb/U比值能够反映源区是否发生过俯冲流体交代作用。在俯冲板块脱水熔融过程中,大离子亲石元素首先运移到俯冲流体中,而高场强元素(如Nb、Ta)则赋存在金红石或钛铁矿残留相中,导致俯冲板片脱水熔融的流体具有较低的Nb/U比值(0.22,Ayers,1998)。新坪花岗闪长岩Nb/U比值(1.7~2.2)明显低于下地壳的估算值(25)和上地壳的平均值(4.5,Rudnick et al., 2003),暗示纯陆壳物质部分熔融产生的岩浆不可能有如此低的Nb/U比值。此外,新坪花岗闪长岩亏损Nb-Ta和低的Nb/La值(0.20~0.38),亦表明源区受到了俯冲流体的交代作用。Yb-La/Yb(图 9a)和La-La/Sm(图 9b)反映了新坪岩体源区的不均一特征(地壳物质+地幔物质+俯冲流体)以及主要受部分熔融作用控制。

图 9 新坪花岗闪长岩La-Yb (a)和La/Sm-La (b)图 Fig. 9 Major and trace element variation diagrams of Xinping granodiorite

综上所述,新坪花岗闪长岩的源区主要为中元古代地壳物质,并经历了幔源组分的加入和板片俯冲流体的交代作用,岩浆主要受部分熔融作用控制。新坪岩体侵位时间为晚白垩世早期,这一时期中国东南部整体处于伸展拉张构造背景,古太平洋板片的俯冲消减导致玄武质岩浆底垫诱发区域元古代结晶基底发生部分熔融,因此新坪花岗闪长岩具有明显的陆缘弧岩浆活动特征(Zhou et al., 2006) (图 10)。

图 10 新坪花岗闪长岩的构造背景判别图(据Pearce et al., 1984) WPG—板内花岗岩;ORG—洋中脊花岗岩;VAG—火山弧花岗岩;syn—COLG-同碰撞花岗岩 Fig. 10 Diagrams of tectonic environment for Xinping granodiorite by trace elements(after Pearce et al., 1984) WPG-within plate granite; ORG-oceanic ridge granite; VAGvolcanic arc granite; syn-COLG-syn-collision granite on
5.2 早白垩世晚期岩浆活动与Cu-Au-Mo成矿

早白垩世晚期(110~100 Ma)是中国东南部重要的构造-岩浆活动期,这一时期形成了大量的中酸性侵入岩以及少量火山岩和中基性脉岩,具有陆内双峰式岩浆活动特征。侵入岩以粤闽浙沿海地区最为发育,集中分布在长乐—南澳断裂带附近,岩性为花岗闪长岩、石英闪长岩、石英二长岩以及少量二长花岗岩,呈小岩体或岩株状,属高钾钙碱性偏铝质花岗岩类,如粤东三饶岩体(102±1)Ma和新圩岩体(103~106 Ma)(LA-ICP-MS锆石U-Pb)(贾丽辉, 2018),福建的福州杂岩体(100~107Ma)(LAICP-MS锆石U-Pb)(林清茶等,2011)、漳州岩体(100~107 Ma) (LA-ICP-MS锆石U-Pb)(Chen et al., 2013)、漳州角美岩体((106.4±1.8)Ma) (LAICP-MS锆石U-Pb)(杨金豹等, 2013)、漳浦复式岩体中的程溪花岗闪长岩((101.3±3.2)Ma) (LA-ICPMS锆石U-Pb)(邱检生等,2012),闽西南四方岩体((109.5±0.8)Ma)、罗卜岭岩体(105.4~107 Ma)、紫金山岩体(104.5~107.5 Ma) (LA-ICP-MS锆石U-Pb) (Duan et al., 2017),浙江沿海普陀山岩体((110.2±1.1) Ma)(TIMS锆石U-Pb)(邱检生等,1999)、龙王堂岩体((109.8±0.4)Ma)(黑云母Ar-Ar)(陈江峰等, 1991) 以及石平川岩体((103±1)Ma)(LA-ICP-MS锆石UPb)(李艳军等,2009)。该期岩体多被后期(100~90 Ma)碱长(晶洞)花岗岩或二长花岗岩侵入,新编的广东省区域地质志(2017)将粤东地区早白垩世晚期(102~109 Ma)和晚白垩世早期(~95 Ma)岩浆岩分别厘定为早白垩世第四阶段和第五阶段侵入岩,研究区新坪花岗闪长岩同样被较晚期((95.6±0.8) Ma)花岗斑岩侵入,反映了二者之间呈脉动接触关系,为同期岩浆活动的不同阶段产物,这与东南沿海燕山晚期I-A型复合岩体的形成相一致(邱检生等, 1999)。

这一时期的岩浆岩在东南内陆地区呈零星出露,除文中报道的新坪花岗闪长岩(104.6±1.8 Ma) 外,尚有粤西连阳复式岩体中的白浆黑云母花岗岩((106±0.7)Ma) (LA-ICP-MS锆石U-Pb)(高剑锋等,2005)、赣南会昌埃达克质粗面岩((110.7±1.0) Ma) (SHRIMP锆石U-Pb)(钟志菲等,2015)和会昌橄榄玄粗岩((107.3±2.3)Ma)(全岩Rb-Sr)(章邦桐等, 2008),云开地区广西陆川三叉冲黑云母花岗岩(103±1 Ma) (LA-MC-ICP-MS锆石U-Pb)(杨振等, 2014)以及广西龙头山流纹斑岩((103.7±2.4)Ma)和花岗斑岩((100.3±1.4)Ma) (SHRIMP锆石U-Pb) (陈富文等, 2008),等等。

有关早白垩世晚期花岗质岩浆的成因,目前普遍认为与古太平洋板块消减背景下幔源岩浆的底侵作用有着重要关系(Zhou et al., 2006Wang et al., 2012杨金豹等,2013Chen et al., 2014Duan et al., 2017张永谦等,2019)。广东麒麟新生代玄武质角砾岩筒中的辉长质麻粒岩捕虏体获得其Sm-Nd等时线年龄为(112.3±17.8)Ma(徐夕生等,1999),表明中国大陆边缘存在这一时期玄武质岩浆的底侵作用。粤浙闽沿海中酸性侵入岩中普遍存在着铁镁质暗色包体(MME),锆石εHf(t)值相对集中且为正值,表明成岩过程中有地幔物质的参与,并发生大规模的基性-酸性岩浆混合作用(Chen et al., 2013Zhang et al., 2019)。然而,粤西北白浆黑云母花岗岩为过铝质S型花岗岩(高剑锋等,2005),粤北—赣南地区产出同时期的花岗闪长岩、橄榄玄武岩等,暗示了早白垩世晚期的岩浆活动从内陆向东南沿海幔源岩浆参与程度的不断增加,内陆不同地区壳幔作用程度差异可能与古太平洋板块消减作用下局部软流圈地幔上涌有关。

早白垩世晚期同样也是中国东南沿海铜、金、钼的重要成矿期(宋传中等,2019),矿床主要见于浙闽一带,如浙东的余坑、半岭斑岩型Cu-Au矿床、浙东南的怀溪Cu-Au矿床(101~102 Ma)(李艳军等, 2010),以及闽西南紫金山斑岩型Cu-Au-Mo矿床(Li et al., 2015)。紫金山矿区罗卜岭花岗闪长斑岩(105.4~107 Ma)是典型的铜(钼)矿体,四方岩体((109.5±0.8)Ma)也具有铜多金属成矿亲缘性,获得的矿区辉钼矿Re-Os年龄为110~105 Ma(Duan et al., 2017),黄铜矿等时线年龄为103 Ma(Jiang et al., 2017),表明Cu多金属成矿与成岩作用同期。毛景文等(2014)研究表明,斑岩铜钼矿或斑岩铜金钼矿多产于板块消减边界的大陆边缘,成因上主要与中酸性的钙碱性弧岩浆有关。新坪岩体岩性为花岗闪长岩,属高钾钙碱性岩浆岩,形成于燕山晚期的陆缘弧岩浆活动阶段,岩体侵位时代和岩石地球化学特征均与邻区紫金山含矿岩体基本一致,并且野外能观察到明显的辉钼矿化,因此具有较好的铜钼矿找矿前景。

6 结论

(1) 佛冈复式岩体新坪花岗闪长岩具有中酸性(SiO2=63.43%~65.27%)、准铝质(ACNK=0.76~0.92)、中等碱含量(ALK=6.09%~7.63%)和高钾钙碱性特征。富集轻稀土,LREE/HREE=8.26~13.20,(La/Yb)N=8.17~16.64,轻稀土分馏较重稀土明显,(La/Sm)N=3.87~6.49,(Gd/Yb)N=1.45~1.81,轻微的铕亏损,δEu=0.73~0.87。富集大离子亲石元素Rb、U、Th和La,亏损高场强元素Nb、Ta、Ti和P、Ba、Sr。

(2) 新坪花岗闪长岩εHf(t)值为-3.0~+0.2,Hf二阶段模式年龄tDM2=1.16~1.36 Ga,镁指数(Mg#)=42.64~46.95(>40),表明其源区主要为中元古代地壳物质,并有一定程度的亏损地幔组分参与。岩石Nb/U=1.7~2.2,Nb/La值=0.20~0.38,显示了岩浆源区受到俯冲流体的交代作用。岩石地球化学特征显示在岩体成岩过程中,主要受部分熔融作用控制。

(3) 新坪花岗闪长岩体侵位时间为104 Ma,为早白垩世晚期岩浆活动的产物,具有陆缘弧岩浆活动特征。岩体形成于燕山晚期古太平洋板片俯冲消减作用下的伸展拉张构造环境,与玄武质岩浆底垫诱发中元古代结晶基底发生部分熔融有关。早白垩世晚期为中国东南部晚中生代重要的Cu-AuMo成矿期,位于南岭中东段的新坪花岗闪长岩与邻区闽西南紫金山铜多金属岩(矿)体形成时代相同,岩石地球化学特征相似,且野外能观察到明显的铜钼矿化,因此具有较好的铜钼矿找矿前景。

注释

❶庄文明, 刘建雄, 黄继春, 李出安. 2017. 广东省及香港、澳门特别行政区区域地质志[R]. 广州: 广东省地质调查院.

参考文献
Andersen T. 2002. Correction of common Pb in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 192: 59-79. DOI:10.1016/S0009-2541(02)00195-X
Ayers J. 1998. Trace element modeling of aqueous fluid-peridotite interaction in the mantle wedge of subduction zones[J]. Contributions to Mineralogy and Petrology, 132(4): 390-404. DOI:10.1007/s004100050431
Bao Zhiwei, Zhao Zhenhua. 2003. Geochemistry and tectonic setting fo the Fogang aluminous A-type granite, Guangdong Province, China-A preliminary study[J]. Geology-Geochemistry, 31(1): 52-61 (in Chinese with English abstract).
Chappell B W, White A J R. 1992. I- and S-type granites in the Lachlan fold belt[J]. Royal Society of Edinburgh Transaction, 83: 1-26.
Chen Fuwen, Li Huaqin, MeiYuping. 2008. Zircon SHRIMP U-Pb chronology of diagenetic mineralization of the Longtoushan porphyry gold orefield, Gui County, Guangxi[J]. Acta Geologica Sinica, 82(7): 921-926.
Chen Jiangfeng, Zhou Taixi, Yin Chunsheng. 1991. 40Ar-39Ar dating of several mesozoic plutous in Southeastern Zhejiang Province[J]. Acta Petrologica Sinica, 3: 37-44 (in Chinese with English abstract).
Chen Jingyuan, Yang Jinhui, Zhang Jiheng, Sun Jinfeng, Simon Wilde. 2013. Petrogenesis of the Cretaceous Zhangzhou batholith in southeastern China: Zircon U-Pb age and Sr-Nd-Hf-O isotopic evidence[J]. Lithos, 162-163: 140-156. DOI:10.1016/j.lithos.2013.01.003
Chen Jingyuan, Yang Jinhui, Zhang Jiheng, Sun Jingfeng. 2014. Geochemical transition shown by Cretaceous granitoids in southeastern China: Implications for continental crustal reworking and growth[J]. Lithos, 196-197: 115-130. DOI:10.1016/j.lithos.2014.03.003
Chen Jingyuan, Yang Jinhui. 2015. Petrogenesis of the Fogang highly fractionated Ⅰ-type granitoids: Constraints from Nb, Ta, Zr and Hf[J]. Acta Petrologica Sinica, 31(3): 846-854 (in Chinese with English abstract).
Chen Xiaoming, Wang Rucheng, Liu Changshi, Hu Huan, Zhang Wenlan, Gao Jianfeng. 2002. Isotopic dating and genesis for Fogang biotite granites of Conghua area, Guangdong Province[J]. Geological Journal of China Universities, 8(3): 293-307.
Chung Sunlin, Liu Dunyi, Ji Jianqing, Chu Meifei, Lee haoyang, Wen dajen, Lo Chinghua, Lee Tungyi, Qian Qing, Zhang Qi. 2003. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet[J]. Geology, 31(11): 1021-1024. DOI:10.1130/G19796.1
Danyushevsky L V, Falloon T J, Crawford A J, Tetroeva S A, Leslie R L, Verbeeten A. 2008. High-Mg adakites from Kadavu Island Group, Fiji, southwest Pacific: Evidence for the mantle origin of adakite parental melts[J]. Geology, 36(6): 499-502. DOI:10.1130/G24349A.1
Duan Gan, Chen Huayong, Hollings P, Qi Jinping, Xu Chao, Zhang Shuang, Xiao Bin, Liu Guangyong, Liu Jianming. 2017. The Mesozoic magmatic sources and tectonic setting of the Zijinshan mineral field, South China: Constraints from geochronology and geochemistry of igneous rocks in the Southeastern Ore Segment[J]. Ore Geology Reviews, 80: 800-827. DOI:10.1016/j.oregeorev.2016.08.016
Gao Jianfeng, Ling Hongfei, Sheng Weizhou, Lu Jianjun, Zhang Min, Huang Guolong, Tan Zhengzhong. 2005. Geochemistry and petrogenesis of Lianyang granite composite, west Guangdong Province[J]. Acta Petrologica Sinica, 21(6): 1645-1656 (in Chinese with English abstract).
Gilder S A, Gill J, Coe R S, Zhao Xixi, Liu Zhongwei, Wang Genxian, Yuan Kuirong, Liu Wenlong, Kuang Guodong, Wu Haoruo. 1996. Isotopic and paleomagnetic constraints on the mesozoic tectonic evolution of South China[J]. Journal of Geophysical Research: Solid Earth, 1011(7): 16137-16154.
Griffin W L, Belousova E A, Shee S R. 2004. Crustal evolution in the northern Yilarn Craton: U-Pb and Hf-isotope evidence from detrital zircons[J]. Precambrian Research, 131(3-4): 231-281. DOI:10.1016/j.precamres.2003.12.011
Guo Haihao, Xiao Yilin, Gu Xiangping, Huang Jian, Hou Zhenhui, Liu Haiyang. 2014. LA-ICP-MS allanite U-Th-Pb geochronology study on Guangdong Xinfeng REE-rich granite[J]. Acta Geologica Sinica, 88(6): 1025-1037 (in Chinese with English abstract).
Guo Xianqing, Yan Ziqiu, Wang Zhijun, Wang T, Hou Kejun, Fu Changlei, Li Jiaohong. 2012. Middle Triassic arc magmatim along the northeastern margin of the Tibet: U-Pb and Lu-Hf zircon characterization of the Gangcha complex in the West Qinling terrane, central China[J]. Journal of the Geological Society, 169(3): 327-336. DOI:10.1144/0016-76492011-083
Hoskin P W O, Black L P. 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology, 18(4): 423-439. DOI:10.1046/j.1525-1314.2000.00266.x
Hou Kejun, Li Yanhe, Zou Tianren, Qu Xiaoming, Shi Yuruo, Xie Guiqing. 2007. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications[J]. Acta Petrologica Sinica, 23(10): 2595-2604 (in Chinese with English abstract).
Hou Zengqian, Gao Yongfeng, Qu X M, Rui Z Y, Mo Xuanxue. 2004. Origin of adakitic intrusives generated during Mid-Miocene east-west extension in southern Tibet[J]. Earth and Planetary Science Letters, 220(1/2): 139-155.
Jia Lihui. 2018. Petrogenesis of Late Mesozoic Granitoids and Evalution of Metallogenic Potential in Eastern Guangdong, Coastal Area of SE China[D]. Beijing: China University of Geosciences, 1-153 (in Chinese with English abstract).
Jiang Sihong, Bagas L, Liang Qingling. 2017. Pyrite Re-Os isotope systematics at the Zijinshan deposit of SW Fujian, China: Constraints on the timing and source of Cu-Au mineralization[J]. Ore Geology Reviews, 80: 612-622. DOI:10.1016/j.oregeorev.2016.07.024
Jiang Yaohui, Jiang Shaoyong, Ling Hongfei, Dai Baozhang. 2006. Low-degree melting of a metasomatized lithospheric mantle for the origin of Cenozoic Yulong monzogranite-porphyry, east Tibet: Geochemical and Sr-Nd-Pb-Hf isotopic constraints[J]. Earth and Planetary Science Letters, 241(3/4): 617-633.
King P L, White A J R, Chappell B W, Allen C M. 1997. Characterization and origin of aluminous A-type granites from the Lachlan Fold belt, Southeastern Australia[J]. Journal of Petrology, 38(3): 371-391. DOI:10.1093/petroj/38.3.371
Li Bin, Jiang Shaoyong. 2014. A subduction-related metasomatically enriched mantle origin for the Luoboling and Zhongliao Cretaceous granitoids from South China: Implications for magma evolution and Cu-Mo mineralization[J]. International Geology Review, 57(9/10): 1239-1266.
Li Xianhua, Li Zhengxiang, Li Wuxian, Liu Ying, Yuan Chao, Wei Gangjian, Qi Changshi. 2007. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I-and A-type granites from central Guangdong, SE China: A major igneous event in response to foundering of a subducted flat-slab?[J]. Lithos, 96(1/2): 186-204.
Li Xianhua, Zhao Zhenhua, Gui Xuntang, Yu Jinsheng. 1991. Sm-Nd Isotopic and zircon U-Pb constraints on the age of formation of the Precambrian crust in southeast China[J]. Geochimica, 3: 255-264 (in Chinese with English abstract).
Li Yanjun, Wei Junhao, Yao Chunliang, Yan Yunfei, Tan Jun, Fu Lebin, Pan Jinbo, Li Wei. 2009. Zircon U-Pb dating and tectonic significance of the Shipingchuan Granite in Southeastern Zhejiang Province, SE China[J]. Geological Review, 55(5): 673-684 (in Chinese with English abstract).
Li Yanjun, Wei Junhao, Yao Chunliang, Yan Yunfei, Tan Jun, Peng Lina, Xiao Guangling, Ye Zefu. 2010. Genetic relationship of the Huaixi copper-gold deposit and the Caomen Alkaline granite, Southeastern Zhejiang Province, China: Constraint from Geochronologies[J]. Earth Science -Journal of China University of Geosciences, 35(4): 585-596 (in Chinese with English abstract). DOI:10.3799/dqkx.2010.074
Lin Qingcha, Cheng Xiongwei, Zhang Yuquan, Wang Fangyue. 2011. Evolution of Granitoids in the active continental margin: A case study of the Fuzhou compound complex[J]. Acta Geologica Sinica, 85(7): 37-44 (in Chinese with English abstract).
Liu Changshi, Chen Xiaoming, Chen Peirong, Wang Rucheng, Hu Huan. 2003. Subdivision, Discrimination criteria and genesis for a type rock suites[J]. Geological Journal of China Universities, 9(4): 573-591 (in Chinese with English abstract).
Liu Changshi, Chen Xiaoming, Wang Rucheng, Zhang Wenlan, Hu Huan. 2005. Isotopic dating and origin of complexly zoned micas for A-type Nankunshan aluminous granite[J]. Geological Review, 51(2): 193-200 (in Chinese with English abstract).
Liu Yongsheng, Gao Shan, Hu Zhaochu, Gao Changgui, Zong Keqing, Wang Dongbing. 2010a. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths[J]. Journal of Petrology, 51(1/2): 537-571.
Liu Yongsheng, Hu Zhaochu, Gao Shan, Gunther D, Xu Juan, Gao Changgui, Chen Haihong. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257(1): 34-43.
Liu Yongsheng, Hu Zhaochu, Zong Keqing, Gao Changgui, Gao Shan, Xu Juan, Chen Haihong. 2010b. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 55(15): 1535-1546. DOI:10.1007/s11434-010-3052-4
Ludwig K R. 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel[D]. Berkeley: Berkeley Geochronology Center, California.
Mao Jingwen, Luo Maocheng, Xie Guiqing, Liu Jun, Wu Shenghua. 2014. Basic characteristics and new advances in research and exploration on porphyry copper deposits[J]. Acta Geologica Sinica, 88(12): 2153-2175 (in Chinese with English abstract).
Middlemost E A K. 1994. Naming materials in the magma/igneous rock system[J]. Earth Science Reviews, 37(3/4): 215-224.
Morel M L A, Nebel O, Nebel-Jacobsen Y, Miller J S, Vroon P Z. 2008. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS[J]. Chemical geology, 255(1/2): 231-235.
Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25(4): 956-983. DOI:10.1093/petrology/25.4.956
Peccerillo A, Taylor D R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kaitamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 58(1): 63-81. DOI:10.1007/BF00384745
Qiu Jiansheng, Li Zhen, Liu Liang, Zhao Jiaolong. 2012. Petrogenesis of the Zhangpu Composite Granite Pluton in Fujian Province: Constrains from Zircon U-Pb Ages, Elemental Geochemistry and Nd-Hf Isotopes[J]. Acta Geologica Sinica, 86(4): 561-576 (in Chinese with English abstract).
Qiu Jiansheng, Wang Dezi, Brent I A McInnes. 1999. Geochemistry and petrogenesis of the I-and A-type composite granite masses in the coastal area of Zhejiang and Fujian Province[J]. Acta Petrologica Sinica, 15(2): 237-246 (in Chinese with English abstract).
Rapp R P, Watson E B. 1995. Dehydration melting of metabasalt at 8-32 kbar: Implications for continental growth and crust-mantle Recycling[J]. Journal of Petrology, 36(4): 891-931. DOI:10.1093/petrology/36.4.891
Rudnick R L, Gao S. 2003. Composition of the continental crust[C]//Holland H D and Turekian K K(eds. ). The Crust. Treatise on Geochemistry. Oxford: Elsevier-Pergamon, 3: 1-64.
Sláma J, Košler J, Condon D J, Crowley J L, Gerdes A, Hanchar J M, Horstwood M S A, Morris G A, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett M N, Whitehouse M J. 2008. Plešovice zircon-A new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 249(1/2): 1-35.
Song Chuanzhong, Li Jiahao, Yan Jiayong, Wang Yangyang, Liu Zhendong, Yuan Fang, Li Zhenwei. 2019. A tentative discussion on some tectonic problems in the east of South China continent[J]. Geology in China, 46(4): 704-722 (in Chinese with English abstract).
Streck M J, Leeman W P. 2007. Chesley J. High-magnesian andesite from Mount Shasta: A product of magma mixing and contamination, not a primitive mantle melt[J]. Geology, 35: 351-354. DOI:10.1130/G23286A.1
Su Koulin, Ding Xing, Huang Yonggui, Zheng Xiaozhan, Wu Kai, Hu Yongbin. 2015. Compositional differentiation of Early Cretaceous Yajishan syenitic complex and its petrogenesis[J]. Acta Petrologica Sinica, 31(3): 829-845 (in Chinese with English abstract).
Sun S S, McDonough W E. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J (eds. ). Magmatism in the Ocean Basins. Geological Society of London Special Publication, 42: 313-345.
Sun Tao. 2006. A new map showing the distribution of granites in South China and its explanatory notes[J]. Geological Bulletin of China, 25(3): 332-335 (in Chinese with English abstract).
Taylor S R, Mclennan S M. 1985. The Continental Crust: Its Composition and Evolution[M]. Oxford: Blackwell.
Wang Denghong, Chen Zhenyu, Huang Fan, Wang Chenghui, Zhao Zhi, Cheng Zhenghui, Zhao Zheng, Liu Xinxing. 2014. Discussion on metallogenic specialization of the magmatic rocks and related issues in the Nanling Region[J]. Geotectonica et Metallogenia, 38(2): 230-238 (in Chinese with English abstract).
Wang Lijuan, Griffin W L, Yu Jinhai, O'Reilly S Y. 2010. Precambrian crustal evolution of the Yangtze block tracked by detrital zircons from Neoproterozoic sedimentary rocks[J]. Precambrian Research, 177(1-2): 131-144. DOI:10.1016/j.precamres.2009.11.008
Wang Qiang, Li Xianhua, Jia Xiaohui, Wyman D A, Tang gongjian, Li Zhengxiang, Ma Lin, Yang Yuesheng, Jiang Ziqi, Gou Guoning. 2012. Late Early Cretaceous adakitic granitoids and associated magnesian and potassium-rich mafic enclaves and dikes in the Tunchang-Fengmu area, Hainan Province (South China): Partial melting of lower crust and mantle, and magma hybridization[J]. Chemical Geology, 328: 222-243. DOI:10.1016/j.chemgeo.2012.04.029
Watson E B, Harrison T M. 1983. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types[J]. Earth and Planetary Science Letters, 64(2): 295-304. DOI:10.1016/0012-821X(83)90211-X
Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95: 407-419. DOI:10.1007/BF00402202
Wiedenbeck M, Alle P, Corfu F, Griffin W L, Meier M, Oberli F, Quadt A, Roddick J C, Spiegel W. 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses[J]. Geostandards and Geoanalytical Research, 19(1): 1-23. DOI:10.1111/j.1751-908X.1995.tb00147.x
Wolf M B, London D. 1994. Apatite dissolution into peraluminous haplogranitic melts: an experimental study of solubilities and mechanism[J]. Geochimica et Cosmochimica Acta, 58: 4127-4145. DOI:10.1016/0016-7037(94)90269-0
Wu Fuyuan, Yang Yueheng, Xie Liewen, Yang Jinhui, Xu Ping. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology[J]. Chem. Geol., 234(1): 105-126.
Xu Xisheng, Zhou Xinmin, O'Reilly S Y, Tang Hongfeng. 1999. Exploration for the lower crustal materials and granite genesis in southeast China[J]. Acta Petrologica Sinica, 15(2): 217-223 (in Chinese with English abstract).
Yang Jinbao, Sheng Dan, Zhao Zhidan, Ding Cong, Zhou Hongfang, Cui Yuanyuan, Jiang Ting, Hu Zhaochu. 2013. Petrogenesis and implications of granites and associated dioritic enclaves in Jiaomei area, Zhangzhou, Fujian Province[J]. Acta Petrologica Sinica, 29(11): 4004-4010 (in Chinese with English abstract).
Yang Zhen, Liu Rui, Wang Xinyu, Zhou Guofa. 2014. Petrogenesis and Tectonic Significance of Late Yanshanian Granites in Yunkai Area, Southeast China: Evidence from Zircon U-Pb Ages and Hf Isotopes[J]. Earth Science-Journal of China University of Geosciences,, 39(9): 1258-1276 (in Chinese with English abstract).
Yu Jinhai, O, Reilly S Y, Wang Lijuan, Griffin W L, Zhang Ming, Wang Rucheng, Jiang Shaoyong, Shu Liangshu. 2008. Where was South China in the Rodinia supercontinent? Evidence from U-Pb Geochronology and Hf Isotopes of Detrital Zircons[J]. Precambrian Research, 164(1): 1-15.
Yu Jinhai, O, Reilly S Y, Wang Lijuan, Griffin W L, Zhou Meifu, Zhang Ming, Shu Liangshu. 2010. Components and episodic growth of precambrian crust in the Cathaysia block, South China: Evidence from U-Pb ages and Hf isotopes of zircon in Neoproterozoic sediments[J]. Precambrian Research, 181(1): 97-114.
Zhang Bangtong, Wu Junqi, Ling Hongfei, Chen Peirong. 2008. Geochemical evidence of element and Sr-O-Nd-Pb isotopes for petrogenesis of the Huichang Early Cretaceous shoshonite, southern Jiangxi Province[J]. Acta Geologica Sinica, 82(7): 986-997 (in Chinese with English abstract).
Zhang Bo, Guo Feng, Zhang Xiaobing, Wu Yanming, Wang Guoqing, Zhao Liang. 2019. Early Cretaceous subduction of Paleo-Lacific Ocean in the coastal region of SE China: Petrological and geochemical constraints from the mafic intrusions[J]. Lithos, 334-335: 8-24. DOI:10.1016/j.lithos.2019.03.010
Zhang Yongqian, Xu Yao, Yan Jiayong, Xu Zhiwu, Zhao Jinhua. 2019. Crustal thickness, properties and its relations to mineralization in the southeastern part of South China: Constraint from the teleseismic receiver functions[J]. Geology in China, 46(4): 723-736 (in Chinese with English abstract).
Zhao Zheng, Wang Denghong, Zhang Changqing, He Yufan. 2014. Metallogenic specialization of the magmatic rocks associated with the Lead-Zinc Deposits in the Nanling Region[J]. Geotectonica et Metallogenia, 38(2): 289-300 (in Chinese with English abstract).
Zhong Zhifei, Wu Jianhua. 2015. Geochronology, geochemical characteristics and genesis significance of adakitic trachyte in Huichang Basin, Jiangxi Province[J]. Journal of China Institute of Technology, 38(2): 167-175 (in Chinese with English abstract).
Zhou Xinmin, Sun Tao, Shen Weizhou, Shu Liangshu, Niu Yaoling. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution[J]. Episodes, 29(1): 26-33. DOI:10.18814/epiiugs/2006/v29i1/004
Zhu Dicheng, Zhao Zhidan, Pan Guitang, Lee haoyang, Kang Zhiqiang, Liao Zhongli, Wang liquan, Li Guangming, Dong guochen, Liu Bo. 2009. Early cretaceous subduction-related adakite-like rocks of the Gangdese Belt, southern Tibet: Products of slab melting and subsequent melt-peridotite interaction?[J]. Journal of Asian Earth Sciences, 34(3): 298-309. DOI:10.1016/j.jseaes.2008.05.003
Zhuang Wenming, Chen Shaoqian, Huang Youyi. 2000. Geological and geochemical characteristics of Fogang composite pluton and its source rock[J]. Guangdong Geology, 15(3): 1-12 (in Chinese with English abstract).
包志伟, 赵振华. 2003. 佛冈铝质A型花岗岩的地球化学及其形成环境初探[J]. 地质地球化学, 31(1): 52-61. DOI:10.3969/j.issn.1672-9250.2003.01.009
陈富文, 李华芹, 梅玉萍. 2008. 广西龙头山斑岩型金矿成岩成矿锆石SHRIMP U-Pb年代学研究[J]. 地质学报, 82(7): 921-926. DOI:10.3321/j.issn:0001-5717.2008.07.009
陈江峰, 周泰禧, 印春生. 1991. 浙东南某些中生代侵入岩体的40Ar-39Ar年龄测定[J]. 岩石学报, 3: 37-44. DOI:10.3321/j.issn:1000-0569.1991.03.005
陈璟元, 杨进辉. 2015. 佛冈高分异Ⅰ型花岗岩的成因: 来自Nb-Ta-Zr-Hf等元素的制约[J]. 岩石学报, 31(3): 846-854.
陈小明, 王汝成, 刘昌实, 胡欢, 张文兰, 高剑锋. 2002. 广东从化佛冈(主体)黑云母花岗岩定年和成因[J]. 高校地质学报, 8(3): 293-307. DOI:10.3969/j.issn.1006-7493.2002.03.006
高剑锋, 凌洪飞, 沈渭洲, 陆建军, 张敏, 黄国龙, 谭正中. 2005. 粤西连阳复式岩体的地球化学特征及其成因研究[J]. 岩石学报, 21(06): 1645-1656.
葛小月, 李献华, 陈志刚, 李伍平. 2002. 中国东部燕山期高Sr低Y型中酸性火成岩的地球化学特征及成因: 对中国东部地壳厚度的制约[J]. 科学通报, 47(6): 474-480. DOI:10.3321/j.issn:0023-074X.2002.06.018
郭海浩, 肖益林, 谷湘平, 黄建, 侯振辉, 刘海洋. 2014. 广东新丰稀土花岗岩中褐帘石LA-ICP-MS的U-Th-Pb定年研究[J]. 地质学报, 88(6): 1025-1037.
侯可军, 李延河, 邹天人, 曲晓明, 石玉若, 谢桂青. 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J]. 岩石学报, 23(10): 2595-2604. DOI:10.3969/j.issn.1000-0569.2007.10.025
贾丽辉. 2018. 东南沿海粤东地区晚中生代花岗质岩石成因研究与含矿性评价[D]. 北京: 中国地质大学, 1-153.
李献华, 赵振华, 桂训唐, 于津生. 1991. 华南前寒武纪地壳形成时代的Sm-Nd和锆石U-Pb同位素制约[J]. 地球化学, 3: 255-264. DOI:10.3321/j.issn:0379-1726.1991.03.007
李艳军, 魏俊浩, 姚春亮, 鄢云飞, 谭俊, 付乐兵, 潘锦勃, 李伟. 2009. 浙东南石平川花岗岩体LA-ICP-MS锆石U-Pb年代学及构造意义[J]. 地质论评, 55(5): 673-684. DOI:10.3321/j.issn:0371-5736.2009.05.009
李艳军, 魏俊浩, 姚春亮, 鄢云飞, 谭俊, 彭丽娜, 肖广玲, 叶泽富. 2010. 浙东南怀溪铜金矿床与曹门碱性花岗岩体成因关系的年代学制约[J]. 地球科学——中国地质大学学报, 35(4): 585-596.
林清茶, 程雄卫, 张玉泉, 汪方跃. 2011. 活动大陆边缘花岗岩类演化——以福州复式岩体为例[J]. 地质学报, 85(7): 37-44.
刘昌实, 陈小明, 陈培荣, 王汝成, 胡欢. 2003. A型岩套的分类、判别标志和成因[J]. 高校地质学报, 9(4): 573-591. DOI:10.3969/j.issn.1006-7493.2003.04.011
刘昌实, 陈小明, 王汝城, 张文兰, 胡欢. 2005. 广东南昆山A型花岗岩定年和环带云母研究[J]. 地质论评, 51(2): 193-200. DOI:10.3321/j.issn:0371-5736.2005.02.013
毛景文, 罗茂澄, 谢桂青, 刘军, 吴胜华. 2014. 斑岩铜矿床的基本特征和研究勘查新进展[J]. 地质学报, 88(12): 2153-2175.
邱检生, 李真, 刘亮, 赵姣龙. 2012. 福建漳浦复式花岗岩体的成因: 锆石U-Pb年代学、元素地球化学及Nd-Hf同位素制约[J]. 地质学报, 86(4): 561-576. DOI:10.3969/j.issn.0001-5717.2012.04.003
邱检生, 王德滋, Brent I A McInnes. 1999. 浙闽沿海地区I型-A型复合花岗岩体的地球化学及成因[J]. 岩石学报, 15(2): 237-246.
宋传中, 李加好, 严加永, 王阳阳, 刘振东, 袁芳, 李振伟. 2019. 华南大陆东部若干构造问题的思考[J]. 中国地质, 46(4): 704-722.
苏扣林, 丁兴, 黄永贵, 郑小战, 吴凯, 胡永斌. 2015. 粤中早白垩世亚髻山正长质杂岩体的成分分异及岩石成因[J]. 岩石学报, 31(3): 829-845.
孙涛. 2006. 新编华南花岗岩分布图及其说明[J]. 地质通报, 25(3): 332-335. DOI:10.3969/j.issn.1671-2552.2006.03.002
王登红, 陈振宇, 黄凡, 王成辉, 赵芝, 陈郑辉, 赵正, 刘新星. 2014. 南岭岩浆岩成矿专属性及相关问题探讨[J]. 大地构造与成矿学, 38(2): 230-238.
吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 49(16): 1589-1604. DOI:10.3321/j.issn:0023-074X.2004.16.002
徐克勤, 朱金初, 刘昌实, 沈渭洲. 1989. 华南花岗岩类的成因系列和物质来源[J]. 南京大学学报(地球科学), 3: 1-18.
徐夕生, 鲁为敏, 贺振宇. 2007. 佛冈花岗岩基及乌石闪长岩-角闪辉长岩体的形成年龄和起源[J]. 中国科学(D辑), 37(1): 27-38.
徐夕生, 周新民, O'Reilly S Y, 唐红峰. 1999. 中国东南部下地壳物质与花岗岩成因探索[J]. 岩石学报, 15(02): 217-223.
杨金豹, 盛丹, 赵志丹, 丁聪, 周红芳, 崔圆圆, 蒋婷, 胡兆初. 2013. 福建漳州角美花岗岩与闪长质包体的岩石成因及意义[J]. 岩石学报, 29(11): 4004-4010.
杨振, 刘锐, 王新宇, 周国发. 2014. 云开地区燕山晚期花岗岩的岩石成因及构造意义: 锆石U-Pb年龄及Hf同位素证据[J]. 地球科学——中国地质大学学报, 39(9): 1258-1276.
张绍立, 王联魁, 朱为方, 杨文金. 1983. 华南花岗岩类两个成岩成矿系列的副矿物特征[J]. 矿物岩石地球化学通讯, 3: 27-30.
章邦桐, 吴俊奇, 凌洪飞, 陈培荣. 2008. 会昌早白垩世橄榄玄粗岩(shoshonite)成因的元素及Sr-O-Nd-Pb同位素地球化学证据[J]. 地质学报, 82(7): 986-997. DOI:10.3321/j.issn:0001-5717.2008.07.017
张永谦, 徐峣, 严加永, 徐志伍, 赵金花. 2019. 华南东南部地壳厚度、属性及其与成矿的关系: 基于地震接收函数的约束[J]. 中国地质, 46(4): 723-736.
赵正, 王登红, 张长青, 何玉璠. 2014. 南岭地区与铅锌矿有关岩浆岩的成矿专属性研究[J]. 大地构造与成矿学, 38(2): 289-300.
钟志菲, 巫建华. 2015. 江西会昌盆地埃达克质粗面岩年代学、地球化学与成因研究[J]. 东华理工大学学报(自然科学版), 38(2): 167-175. DOI:10.3969/j.issn.1674-3504.2015.02.005
庄文明, 陈绍前, 黄友义. 2000. 佛冈复式岩体地质地球化学特征及其成岩源岩[J]. 广东地质, 15(3): 1-12.