文章快速检索    
 
  中国地质 2021, Vol. 48 Issue (5): 1609-1622  
0
引用本文
刘芳, 王晰, 海连富, 赵东升. 2021. 大兴安岭南段罕苏木地区二长花岗岩锆石U-Pb年龄、Hf同位素特征及其伸展构造作用[J]. 中国地质, 48(5): 1609-1622.  
Liu Fang, Wang Xi, Hai Lianfu, Zhao Dongsheng. 2021. Zircon U-Pb ages, Hf isotope and extensional tectonics of monzogranite in the Hansumu area of southern Great Khingan[J]. Geology in China, 48(5): 1609-1622. (in Chinese with English abstract).  

大兴安岭南段罕苏木地区二长花岗岩锆石U-Pb年龄、Hf同位素特征及其伸展构造作用
刘芳1,2, 王晰3, 海连富4, 赵东升5    
1. 中国地质大学(北京)地球科学与资源学院, 北京 100083;
2. 宁夏回族自治区地质局, 宁夏 银川 750021;
3. 吉林大学地球科学学院, 吉林 长春 130012;
4. 宁夏回族自治区矿产地质调查院, 宁夏 银川 750021;
5. 内蒙古赤峰地质矿产勘查开发院, 内蒙古 赤峰 024000
摘要:大兴安岭南段罕苏木地区出露大面积的二长花岗岩,为了正确认识该岩体的形成时代及其伸展构造作用,本文采集相关样品,对罕苏木地区出露的二长花岗岩体开展了岩相学、LA-MC-ICP-MS锆石年代学和Hf同位素分析研究。研究结果表明:罕苏木地区二长花岗岩岩性为微细粒斑状含角闪黑云二长花岗岩和细粒斑状含黑云二长花岗岩,具有斑状和似斑状结构,块状构造。二长花岗岩中的锆石为岩浆成因,测得206Pb/238U年龄的加权平均值为(136±1)Ma(MSWD=1.4),属于早白垩世晚期岩浆活动的产物。这一结果与研究区及周边,甚至是与区域上中国东北地区114~145 Ma岩浆活动相吻合,都属于同一岩浆活动阶段的产物。罕苏木地区二长花岗岩锆石的εHft)值均为正值,变化范围为7.1~14.4,并且具有较年轻的二阶段模式年龄,TDM2为324~959 Ma。年轻的Hf同位素模式年龄,暗示在新元古代-晚古生代曾发生一次重要的地壳增生事件。结合区域地质,表明研究区二长花岗岩的岩浆可能是来源于从亏损地幔中新增生的年轻地壳发生部分熔融的产物,在侵位过程中受到了地壳或岩石圈地幔的混染,可能形成在造山后岩石圈伸展环境下,与古太平洋板块向欧亚大陆俯冲有关。
关键词二长花岗岩    锆石U-Pb年龄    Hf同位素    伸展构造    大兴安岭    地质调查工程    
中图分类号:P597            文献标志码:A             文章编号:1000-3657(2021)05-1609-14
Zircon U-Pb ages, Hf isotope and extensional tectonics of monzogranite in the Hansumu area of southern Great Khingan
LIU Fang1,2, WANG Xi3, HAI Lianfu4, ZHAO Dongsheng5    
1. School of Earth Sciences and Resources, China University of Geosciences(Beijing), Beijing 100083, China;
2. Geological Bureau of Ningxia Hui Autonomous Region, Yinchuan 750021, Ningxia, China;
3. College of Earth Sciences, Jilin University, Changchun 130012, China;
4. Ningxia Mineral and Geological Survey Institute, Yinchuan 750021, Ningxia, China;
5. Chifeng Institute of Geological and Mineral Exploration and Development, Inner Mongolia, Chifeng 024000, Inner Mongolia, China
Abstract: Large area of monzogranite is outcropped in the Hansumu area of southern Great Khingan. In order to recognize the formation age of the rock and its tectonic significance, samples were collected from the monzogranite pluton to study its petrography, zircon LA-MC-ICP-MS age and Hf isotope. The results show that the pluton is composed of fine-grained porphyritic amphibolit-biotite monzogranite and fine-grained porphyritic biotite monzogranite with porphyritic and porphyritic structures and massive structures. The zircons from the monzogranite is of magmatic origin, and yields 206Pb/238U age of 136±1 Ma (MSWD=1.4), which suggests that the pluton was formed in the late Early Cretaceous. This result is strongly consistent with the study area and its surrounding areas, and even with the 114-145 Ma magmatic activities in the northeastern of China, indicating the products of the same magmatic activity stage. The monzogranite in the Hansumu area has positive εHf (t) values of 7.1 to 14.4 and young Hf two-stage model ages, and TDM2 is 324 to 959 Ma. Young Hf isotope model ages imply that this area could have experienced an important crustal accretion event during the Neoproterozoic-Late Proterozoic. Combined with regional geology, it is suggested that the monzogranite was likely derived from the partial melting of young mantle, and possibly was formed in a lithosphere extensional tectonics environment related to the subduction of the Paleo-Asian plate to Eurasia Plate.
Key words: Monzonitic granite    zircon U-Pb ages    Hf isotopic    extensional tectonics    Great Khingan    geological survey engineering    

1 引言

大兴安岭是重要的成矿区,也是研究中国中生代构造岩浆演化的重点地区之一,它的大地构造位置是在中亚造山带的东段(Sengor et al., 1993),区域上发育有114~145 Ma、170~200 Ma、240~270 Ma、310~340 Ma、475~505 Ma五期比较重大的花岗质岩浆活动(Wu et al., 2011Wang et al., 2017),其中主要发育有晚古生代和早白垩世两个阶段的花岗岩体(Wu et al., 2011张兴洲等,2012;李猛星等,2020;贺虫云等,2020)。在中生代时期,区域上西伯利亚板块与华北板块发生碰撞,同时经历了蒙古—鄂霍茨克构造体系与环太平洋构造体系的叠加和改造(吴福元等, 2003; 孟恩等, 2011Zhang et al., 2019),以及后期的巨型地壳伸展(Wang et al., 2011)和大规模的岩浆事件(吴福元等, 2003绍济安等, 2005)。大兴安岭南段岩浆作用十分发育,孕育出了丰富的矿产资源(图 1b)(欧阳荷根等,2013),主要发育有燕山期和海西期的花岗岩体(张德全等,1993Jahn et al., 2000)。在大兴安岭南段罕苏木地区出露有大面积的二长花岗岩岩体,经过前人开展的大量研究,积累了一定的基础资料和数据,然而对该岩体的形成时代及岩性特征仍然存在争议,有研究认为该地区花岗岩体的形成时代为白垩纪(燕山晚期),岩性为黑云母花岗岩;还有研究测得该花岗岩体的锆石U-Pb年龄为236.8 Ma,岩性为粗中粒花岗闪长岩,认为形成时代为中三叠世。为了正确认识该花岗岩体的形成时代和构造意义,本文采集了相关样品,开展了岩石岩相学特征、Hf同位素以及锆石U-Pb年代学研究,探讨了其形成时代与构造意义,为深入了解大兴安岭南段岩浆活动及构造事件提供依据。

图 1 大兴安岭南段大地构造位置图(a)(据吴福元等,2007修改)及岩浆分布与矿产资源略图(b)(据张兴洲等,2012修改) 1—中—新生代地层;2—晚古生代地层;3—早燕山期花岗岩;4—海西期花岗岩;5—早古生代花岗岩;6—晚燕山期花岗岩;7—Pb-Zn矿床及编号;8-Fe-Sn矿床及编号;9—Cu-Mo矿床及编号;10—断层;11—罕苏木;12—研究区位置;13—地名;14—国境线;15—断裂(F1—塔源—喜桂图断裂;F2—贺根山—黑河断裂;F3—西拉木伦—长春断裂;F4—伊通—依兰断裂;F5-牡丹江断裂;F6—敦化—密山断裂)区域典型矿床:①—敖仑花;②—半拉山;③—羊场;④-老架构;⑤—闹牛山;⑥—莲花山;⑦—龙头山;⑧—蒙恩陶勒盖;⑨—布敦化;⑩—敖尔盖;⑪—大井;⑫—黄岗;⑬—白音诺尔;⑭—毛登;⑮—宝盖沟;⑯—查木汗;⑰—浩布高;⑱—敖瑙达巴;⑲—拜仁达坝;⑳—维拉斯托 Fig. 1 Tectonic location (a) (modified from Wu et al., 2007) and geological map showing distribution of magmatic rocks and mineral resources (b) (modified from Zhang et al., 2012) 1-Middle-Cenozoic; 2-Late Paleozoic; 3-Early Yanshan granite; 4-Hercynian granite; 5-Early Paleozoic granite; 6-Late Yanshan granite; 7-PbZn deposits and numbers; 8-Fe-Sn deposits and numbers; 9-Cu-Mo deposits and numbers; 10-fault; 11-Hansumu; 12-Research area; 13-Place name; 14-Border line; 15-Fracture(F1-Tayuan-Xiguitu fracture; F2-Hegenshan-Heihe fracture; F3-Xilamulun-Changchun fracture; F4-YitongYilan fracture; F5-Mudanjiang fracture; F6-Dunhua-Mishan fracture)Typical regional deposits: ①-Aolunhua; ②-Banlashan; ③-Yangchang; ④-Laojiagou; ⑤-Naoniushan; ⑥-Lianhuashan; ⑦-Longtoushan; ⑧-Mengentaolegai; ⑨-Budunhua; ⑩-Aoergai; ⑪-Dajing; ⑫-Huanggang; ⑬-Baiyinnuoer; ⑭-Maodeng; ⑮-Baogaigou; ⑯-Chamuhan; ⑰-Haobugao; ⑱-Aonaodaba; ⑲-Bairendaba; ⑳-Weilasituo
2 区域地质概况

研究区位于大兴安岭南段,大地构造位置是位于大兴安岭的新华夏系构造带的南部。大兴安岭南段主要由松嫩地块、兴安地块和额尔古纳地块组成(图 1a)。区域上经历的大地构造演化过程主要有两个阶段:在古生代至早侏罗世时期,位于中亚造山带的东段, 在中侏罗世至早白垩世时期,则转入到了陆内的伸展构造体制(Meng et al., 2003Xiao et al., 2003)。研究区内发育有晚古生代的基底和燕山期的盖层(王晰等,2018),其中晚古生代基底主要是林西组滨浅海相陆源碎屑岩-碳酸盐建造,海相陆源碎屑岩-火山岩熔岩、火山碎屑岩建造,浅海相陆源碎屑岩泻湖相、湖相陆源碎屑岩建造等。燕山期盖层主要是由陆相的中酸性火山岩组成,发育有塔木兰沟组、满克头鄂博组、玛尼吐组、白音高老组以及梅勒图组。发育的地层有新生代、中生代和古生代地层,并且分布有较大面积的显生宙花岗岩体(赵越等, 1994)。区内出露的花岗质岩体主要有早白垩世斜长花岗斑岩、早白垩世二长花岗岩、早白垩世二长花岗斑岩、早白垩世花岗闪长岩、早白垩世花岗斑岩。

本次开展研究的二长花岗岩位于大兴安岭南段的罕苏木地区,行政区划属于内蒙古赤峰阿鲁科尔沁旗的罕苏木乡,花岗岩岩体位于内蒙古天山镇北西约50 km小井子幅东南部和罕庙幅西北端一带,呈岩株状产出,总体在区域上呈北东向延伸,出露的面积约8 km2。主体岩性为二长花岗岩,与晚古生代地层表现为侵入接触关系(图 2)。

图 2 研究区地质简图 1—全新统冲洪积层; 2—中二叠统大石寨组; 3—中二叠统哲斯组; 4—早白垩世二长花岗岩; 5—石英脉; 6—采样位置; 7—地名 Fig. 2 Simplified geological map of the study area 1-Holocene alluvial layer; 2-Middle Permian Dashizhai Formation; 3-Middle Permian Zhesi Formation; 4-Early Cretaceous monzonitic granite; 5-Quartz veins; 6-Sample location; 7-Place name
3 样品岩石学特征 3.1 样品描述

样品采自内蒙古赤峰地区阿鲁科尔沁旗罕苏木乡,花岗岩体采样坐标为44°39′30″N和119°45′ 51″E(图 2),为了避免样品数据结果引起的偶然性,样品在该坐标为中心,在其周围15~20 m范围内选取。本次共采集样品5件,样品编号为ZS8YQ1、ZS8YQ2、ZS8YQ3、ZS8YQ4和ZS8YQ5,为二长花岗岩。岩石的新鲜面为浅灰绿色,风化面为黄褐色,斑状和似斑状结构,块状构造(图 3ab)。

图 3 二长花岗岩野外露头(a、b)和镜下照片(c、d) Pl—斜长石;Kfs—钾长石;Qtz—石英;Bt—黑云母;Hbl—角闪石 Fig. 3 Outcrop(a、b)and micrographs(c、d)of monzonitic granite P1-Plagioclase; Kfs-Potash feldspar; Qtz-Quartz; Bt-Biotite; Hbl-Common hornblende
3.2 岩石学特征

通过野外地质观察和显微镜下鉴定,研究区二长花岗岩样品定名为微细粒斑状含角闪石黑云母二长花岗岩和细粒斑状含黑云母二长花岗岩(图 3cd)。矿物粒度主要在0.8~11 mm。主要的组成矿物为斜长石、钾长石和石英,黑云母和少量的角闪石为次要矿物组成,副矿物则主要是不透明矿物和磷灰石。次生的矿物有高岭土、粘土、黝帘石、绢云母、绿泥石、铁质。其中,斜长石的含量在20%~25%,呈半自形板状,分布比较杂乱,发育有环带结构,具有粘土化、局部黝帘石化,常见蚀变矿物沿环带分布;钾长石的含量在1%~5%,自形—近半自形板状,零星的分布并具有轻微的高岭土化,有的粒内可见斜长石、黑云母包体;石英含量为5%~10%,半自形粒状,零星分布并具有波状消光,个别粒内可见嵌布斜长石;黑云母的含量约在5%,片状,星散分布,Ng'呈褐色,Np'呈浅黄褐色,具有多色性,局部显示被绿泥石交代,发育双晶弯曲现象;角闪石的含量则小于5%,星散分布,半自形柱粒状,绿色。

基质主要包括了斜长石、钾长石、石英还有黑云母,粒径多为0.1~0.9 mm。其中,斜长石含量15%~20%,呈半自形的板状,分布杂乱,具有不均匀粘土化、黝帘石化等,环带结构局部发育;钾长石含量为25%~30%,为半自形的板状—他形粒状,分布杂乱,具有轻微的高岭土化;石英含量约10%~20%,呈他形粒状,分布杂乱;黑云母的含量比较少,主要呈叶片状,零星分布,多色性和蚀变特征与斑晶一致。

4 分析方法

此次样品的破碎以及锆石单矿物的分选是在河北省廊坊的区域地质调查所实验室进行,首先将样品破碎,样品加工至80~100目,通过重选以及电磁选的方法来完成分选,最后在双目镜下挑选,主要挑选没有明显的裂痕、晶型比较规则而且透明度又比较好的锆石颗粒。

样品的制靶和锆石的阴极发光图像(CL)、透射光图像以及反射光图像的采集是在天津地质矿产研究所同位素实验室进行。首先挑选有代表性的锆石颗粒,将其固定在环氧树脂的表面,然后抛光打磨,让锆石的表面能够完全暴露,在显微镜下对锆石进行阴极发光拍照以及透射光拍照和反射光拍照,再通过反复的对比阴极发光图像与在显微镜下观察的锆石照片,选择最为合适的锆石颗粒和测试点位,以便获得较可靠的年龄信息。

锆石U-Pb年龄的测定工作是在天津地质矿产研究所同位素实验室完成,主要通过LA-MCICP-MS(激光烧蚀多接收电感耦合等离子体质谱仪)完成测定,实验中使用193 nm FX的激光器来对测定的锆石进行剥蚀,分析仪器采用的激光束斑的直径为35 μm,激光剥蚀物质使用He作为载气,测定中采用的外部锆石年龄标准是TEMORA,对Pb、U、Th含量的校正是以NIST612玻璃标样来作为外标,对普通铅进行校正是采用的208Pb校正法(Andersen,2002),详细的分析流程及原理参见李怀坤等(2009, 2010)。对数据的处理主要是利用的ICPMSDataCal程序(Liu et al., 2010) 以及Isoplot (Ludwig, 2003)程序, 本次测定的结果和文献中的报道值在误差的范围内完全一致(Black et al., 2003Yuan et al., 2004柳小明等,2007王岚等,2012)。

锆石原位Lu-Hf同位素分析也是在天津地质矿产研究所同位素实验室完成,在锆石的U-Pb定年分析点上进行同位素Hf分析。同样也是利用激光烧蚀多接收器电感耦合等离子体质谱仪(LAMC-ICP-MS)完成,通过193 nm FX激光器完成了锆石剥蚀,分析采用的激光束斑的直径为50 μm,采用的锆石GJ-1标准,对Hf同位素以及Yb同位素的比值进行的指数归一化质量歧视校正,分别采用的是179Hf/177Hf=0.7325(Patchett and Tatsumoto, 1980)和173Yb/172Yb=1.35274(Chu et al., 2002)。通过对175Lu和172Yb的测定来对176Hf的两个同质异位素176Lu和176Yb进行干扰校正(Chu et al., 2002);对176Yb的同质异位素干扰校正是以剥蚀过程中βYb平均值作为Yb的质量歧视校正系数(Iizuka and Hirata, 2005Wu et al., 2006侯可军等,2007)。测试分析的流程和原理详细参照耿建珍等(耿建珍等, 2011)。176Hf/177Hf的测定结果与文献报道值在误差范围内完全一致(Gerdes and Zeh, 2006侯可军等,2007Yuan et al., 2008)。

5 分析结果 5.1 锆石U-Pb年龄

研究区二长花岗岩的锆石U-Pb测年的结果详见表 1

表 1 二长花岗岩LA-MC-ICP-MS锆石U-Pb同位素分析结果 Table 1 LA-MC-ICP-MS zircon U-Pb analytical results of monzonitic granite

样品所测试的锆石多数是无色的,半自形程度较高,具有明显的结晶环带。阴极发光(CL)图(图 4)结果显示,锆石颗粒大小约100 μm,内部结构清晰,长轴和短轴的比值在1∶1~2∶1,多数的锆石呈短柱状,个别为长柱状,可看到明显的岩浆震荡环带,说明锆石为岩浆成因(张晓飞等,2019)。其中U、Th含量分别为259×10-6~3314×10-6、320×10-6~3833×10-6,平均值分别为1944×10-6、1669.5×10-6,Th/U值为0.39~1.24,也显示测定的锆石为岩浆成因(吴元宝等,2004)。本次共选取了24个测点进行U-Pb同位素测定,测得24个测试点的206Pb/238U年龄为133~140 Ma,结果显示分析点为成群分布,并且都在谐和线上或位于谐和线附近(图 5),测得锆石的206Pb/238U年龄加权平均值为(136±1)Ma(MSWD=1.4),为早白垩世晚期,代表了罕苏木地区二长花岗岩体的侵位年龄。

图 4 二长花岗岩锆石阴极发光(CL)图像及测点年龄 Fig. 4 Ages and CL images of zircons from the monzonitic granite
图 5 二长花岗岩锆石U-Pb谐和图及206Pb/238U年龄 Fig. 5 Concordia diagram and 206Pb/238Uages of zircon in monzonitic granite
5.2 锆石的Hf同位素组成

罕苏木地区二长花岗岩的Lu-Hf同位素分析结果见表 2

表 2 二长花岗岩锆石Hf同位素分析结果 Table 2 Zircon Hf isotopic data of monzonitic granites

所选测点均在已完成U-Pb测年的锆石样品上进行,对二长花岗岩样品中14颗锆石进行了原位Hf同位素测试。测得二长花岗岩样品176Yb/177Hf比值为0.065392~0.159326,平均值为0.102606,176Lu/177Hf比值为0.001678~0.003944,平均为0.0025097,基本接近0.002,说明在形成锆石之后由于放射性成因的Hf的积累非常少,所以锆石在形成时的176Hf/177Hf就可以用初始的176Hf/177Hf比值来表示,从而利用锆石的176Hf/177Hf比值探讨岩石形成时的成因(Stille and Steiger, 1991吴福元等, 2007)。fLu/Hf值为-0.88~-0.95,明显低于铁镁质地壳fLu/Hf值(-0.34)(Amelin et al., 2000),也低于铝质地壳的fLu/Hf值(-0.72)(Vervoort et al., 1996),因此二阶段的模式年龄也就更能反映出源区物质在地壳的平均存留年龄。测得锆石的εHf(t)值为7.1~14.4(均>0),平均为10.0,176Hf/177Hf比值为0.282897~0.283104,平均为0.282976,二阶段模式年龄TDM2(Ma)为324~959 Ma,其加权平均值为641 Ma。

6 讨论 6.1 岩体形成时代

大兴安岭南段罕苏木地区的二长花岗岩岩体,1971年由辽宁省的第二区域地质测量队提交的1∶ 20万协里府幅地质图显示,该岩体为黑云母花岗岩,形成时代为燕山晚期(白垩纪);内蒙古第十地质矿产勘查开发院在2009年实施的项目中认为该岩体为粗中粒花岗闪长岩,测得锆石的U-Pb年龄为236.8 Ma,认为该岩体的形成时代为中三叠世。通过本次研究,测得样品的206Pb/238U年龄的加权平均值为(136±1)Ma(MSWD=1.4),所测样品锆石UPb数据谐和度都比较好,结合锆石阴极发光图像和锆石Th/U比值(Th/U>0.40),锆石为岩浆成因,因此该年龄可以代表罕苏木地区二长花岗岩岩体的年龄,侵位于早白垩世晚期,即前人厘定的二长花岗岩并非形成于中三叠世。

本次测得的结果和罕庙地区的二长闪长岩测得的锆石U-Pb年龄((134±1)Ma)是一致的(王晰等,2018),与研究区相邻的桦杆子沟岩体((136.6±1.1)Ma)(彭青松等,2017)、哈力黑坝岩体((134.8±1.2)Ma)(江思宏等,2011)、花加拉嘎岩体((139±1)Ma)、乌兰达坝岩体((139±1)Ma)(杨奇荻等,2014)和乌兰楚鲁特岩体((139.83±0.82)Ma)(李剑锋等,2016),都属于同时期岩浆活动的产物,岩体成岩时代集中在140~135 Ma(杨奇荻等,2014李剑锋等,2016),与区域上中国东北地区114~145 Ma岩浆活动强烈吻合(Wu et al., 2011欧阳荷根等,2013),与在中国东部地区发生的晚中生代岩浆活动时间主要集中在早白垩世的观点也是一致的(王艺龙等,2019)。

6.2 岩浆源区

近年来,锆石原位Hf同位素分析已经成为解释地壳演化以及示踪岩浆源区的一种有效的方法手段(Vervoort and Patchett, 1996Scherer et al., 2000Zhang et al., 2012)。Amelin et al.(1999)认为花岗岩锆石的εHft)>0,说明岩浆是来源于亏损地幔或者是来源于从亏损地幔中新增生的年轻地壳,εHft)接近于当时地幔值,花岗岩锆石εHft)<0,说明岩浆是来源于古老的地壳发生重熔。本次测得样品的176Hf/177Hf比值为0.282897~0.283104,变化不明显,说明锆石Hf同位素组成比较单一,其岩浆源区也比较单一。锆石的εHft)值是7.1~14.4(均>0),平均为10.0,T-εHft)图解(图 6)可以看出,所测样品基本都在亏损地幔演化线的附近分布。测得样品的二阶段模式年龄TDM2值为324~959 Ma,暗示其岩浆源区为亏损地幔的年轻地壳物质,也暗示在新元古代—晚古生代发生过重要的地壳增生事件。εHft)值变化区间范围比较大,显示出不均一性,造成不均一性的原因有可能是由于来源于地壳物质的混杂或岩石圈地幔物质的混染作用(Zhu et al., 2011周振华等, 2012)。

图 6 二长花岗岩Hf同位素特征(据Yang et al., 2006 Fig. 6 Hf isotopic compositions of monzonitic granite(after Yang et al., 2006)

罕苏木地区的二长花岗岩属于高钾钙碱性I型花岗岩,具有高硅,富铝富钾,相对轻稀土富集,重稀土亏损的特征,也表明岩浆源区有可能来源于地壳物质的部分熔融(刘芳等,2019)。此外,据已有的资料显示,大兴安岭南段黄岗地区早白垩世花岗岩体εHft)值为+3.5~+18.3,TDM2为561~795 Ma(周振华等,2010);黄岗梁地区早白垩世花岗岩体εHft)为+1.9~+8.3,TDM2为888~561 Ma(赵辉等,2015);白音查干早白垩世岩体εHft)为+8.2~+11.6,TDM2为670~450 Ma(姚磊等,2017);甘珠尔庙地区早白垩世小井子岩体的εHft)值为+5.8~+13.9,TDM2为302~821 Ma,花加拉嘎岩体的εHft)值为+2.9~+7.9,TDM2为688~1005 Ma,乌兰达坝岩体的εHft)值为+5.6~+13.8,TDM2为310~836 Ma,巴里木哈德岩体εHft)值为+3.4~+8.1,TDM2为663~968 Ma(杨奇荻等,2014)。这些岩体都具有相似的正εHft)值,并且具有年轻的二阶模式年龄,表明罕苏木地区的花岗岩体和在大兴安岭南段分布的早白垩世花岗岩的岩浆源区具有相似的特征。通常大兴安岭地区发育的显生宙以来的花岗岩的源岩εHft)都为正值,同时具有较低的TDM值,中生代的花岗岩与来源于地幔的年轻的地壳物质有关(洪大卫等,2000林强等,2004)。

因此,表明罕苏木地区二长花岗岩可能是来源于亏损地幔中新增生的年轻地壳发生部分熔融的产物,可能受到了地壳物质的混杂或岩石圈地幔物质的混染。

6.3 构造背景

从区域大地构造分析可知,在晚古生代—中生代期间,研究区经历了两个构造演化阶段,(1)晚古生代二叠纪中晚期到三叠纪中期,华北板块与西伯利亚板块碰撞拼合,同时古亚洲洋发生闭合,形成了基本构造格架(刘伟等, 2003, 2007Davis et al., 2004;Li, 2006;李锦轶等,2007周成林等,2019丁坤等,2020)。(2)在中生代时期,陆缘活化型构造和岩浆活动强烈,大规模成矿(张德全和赵一鸣等, 1993王长明等, 2006张永正等, 2007)。晚侏罗世到早白垩世期间,因为古太平洋板块的俯冲作用,区域构造应力场方向发生改变,由挤压向伸展转换,加厚的地壳发生拆沉作用,地幔物质上涌底侵下地壳发生部分熔融,引发大兴安岭地区的岩浆事件(邵济安等, 1999a, 1999b王艺龙,2019)。前人的大量研究成果也证明,该区在早白垩世处于伸展构造环境(邵济安等,2005张连昌等,2007许文良等,2013)。而罕苏木地区二长花岗岩的形成时代为早白垩世晚期,显然是属于非造山环境,区域上与早白垩世晚期古太平洋板块发生俯冲作用于欧亚大陆之下而形成的弧后伸展环境有关(许文良等,2013)。

大兴安岭地区是受到何种成岩动力学作用而导致的伸展作用,前人主要有地幔柱观点(葛文春等,1999)、蒙古—鄂霍茨克海闭合观点(Fan et al., 2003Ying et al., 2010),还有古太平洋板块的俯冲作用等观点(Zhang et al., 2003, 2010)。前人在岩相学、年代学、古生物、地球物理、增生杂岩等方面进行了大量的研究,结果表明可能主要与古太平洋板块发生俯冲作用后形成的陆内伸展作用相关(Hilde et al., 1977Maruyama,1997张晓东等,2000Zhang et al., 2008Xu et al., 2013)。Maruyama(1997)对海底的磁异常条带进行了研究,表明古太平洋板块是在120~150 Ma斜向向欧亚大陆开始发生俯冲作用。同时大兴安岭地区的早白垩世花岗岩呈NNE、NE向分布(孙德有等, 1994, 2001邵济安等,1999a葛文春等,2005),不同于蒙古—鄂霍茨克缝合的分布方向,而基本上和古太平洋板块的俯冲边缘是一致的,也说明大兴安岭地区早白垩世花岗岩可能是受到了太平洋板块的俯冲作用的影响。

综合分析,本文认为罕苏木地区的二长花岗岩是形成于造山后的伸展环境下,来自幔源的物质上涌,并伴随岩浆底侵作用,导致上覆地壳发生部分熔融,为花岗岩的形成提供了物质来源。因此,罕苏木地区二长花岗岩是伸展背景下岩浆活动的产物,主要与古太平洋板块俯冲欧亚大陆有关。

7 结论

(1)大兴安岭南段罕苏木地区出露有大面积的二长花岗岩,为微细粒斑状含角闪黑云二长花岗岩和细粒斑状含黑云二长花岗岩,斑状和似斑状结构,块状构造。斑晶主要是由斜长石(20%~25%)、钾长石(1%~5%)、石英(5%~10%)、黑云母(3%~5%)及少量角闪石组成。

(2)锆石U-Pb年龄测试结果显示,罕苏木地区二长花岗岩的206Pb/238U年龄加权平均值为(136±1)Ma(MSWD=1.4),即侵位于早白垩世晚期。这一结果与研究区及周边,甚至是与区域上在114~145 Ma中国东北地区的岩浆活动强烈相吻合,属于同一岩浆活动阶段的产物。

(3)罕苏木地区二长花岗岩的岩浆可能来源于从亏损地幔中新增生的年轻地壳发生部分熔融的产物,受到了地壳物质或岩石圈地幔物质的混染;具有年轻的Hf同位素模式年龄,暗示在新元古代—晚古生代期间发生了地壳增生事件;花岗岩形成在造山后岩石圈伸展环境下,主要与古太平洋板块俯冲欧亚大陆有关。

致谢:野外工作得到了吉林大学地质调查研究院内蒙项目组的支持,导师中国地质大学(北京)杜杨松对论文进行了修改,审稿专家审阅并提出了意见,在此一并表示诚挚的感谢!

注释

❶辽宁省第二区域地质测量队四连. 1971.中华人民共和国区域地质矿产报告(矿产部分):1∶20万协里府幅(L-50-XXXⅥ)[R].

❷内蒙古自治区第十地质矿产勘查开发院.2009.内蒙古自治区赤峰市1∶5万区域矿产地质调查报告[R].

参考文献
Amelin Y, Lee D C, Halliday A N, Pidgeon R T. 1999. Nature of the earth'searliest crust from hafnium isotopes in single detrital zircons[J]. Nature, 399(6733): 252-255. DOI:10.1038/20426
Amelin Y, Lee D C, Halliday A N. 2000. Early-Middle Archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains[J]. Geochimica et Cosmochimica Acta, 64(24): 4205-4225. DOI:10.1016/S0016-7037(00)00493-2
Andersen T. 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb[J]. Chemical Geology, 192(1-2): 59-79. DOI:10.1016/S0009-2541(02)00195-X
Black L P, Kamo S L, Allen C M, Aleinikoff J N. 2003. TEMORA1:A new zircon standard for Phanerozoic U-Pb geochronology[J]. Chemical Geology, 200(1/2): 155-170.
Chu N C, Taylor R N, Chavagnac V, Nesbitt R W, Boella R M, Milton J A, German C R, Bayon G, Burton K. 2002. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: An evaluation of isobaric interference corrections[J]. Journal of Analytical Atomic Spectrometry, 17(12): 1567-1574. DOI:10.1039/b206707b
Davis G A, Xu B, Zheng Y D, Zheng W J. 2004. In dosinia nextension in the Solonker suture zone: The Sonid Zuo qi meamorphic corecomplex, Inner Mongolia, China[J]. Earth Science Frontiers, 11(3): 135-144.
Ding Kun, Liang Ting, Zhou Yi, Feng Yonggang, Zhang Ze, Ding Liang, Li Kan. 2020. Petrogenesis of Dahongliutan Biotite Monzogranite in Western Kunlun Orogen: Evidence from Zircon U-Pb Age and Li-Hf Isotope[J]. Northwestern Geology, 53(1): 24-34 (in Chinese with English abstract).
Fan W M, Guo F, Wang Y J, Lin G. 2003. Late Mesozoic calc-alkaline volcanism of post-orogenic extension in the Northern Da Xinggan Mountains, Northeastern China[J]. Journal of Volcanology and Geothermal Research, 121(1): 115-135.
Ge Wenchun, Lin Qing, Sun Deyou, Wu Fuyuan, Yuan Zhongkuan, Li Wenyuan, Chen Mingzhi, Yin Chengxiao. 1999. Geochemical characteristics of the Mesozoic basalts in Da Hinggan Ling: Evidence of the mantle-crust interaction[J]. Acta Petrologica Sinica, 15(3): 396-406 (in Chinese with English abstract).
Ge Wenchun, Wu Fuyuan, Zhou Changyong, Zhang Jiheng. 2005. Zircon U-Pb ages and its significance of the Mesozoic granites in the Wulanhaote region, central Da Hinggan Mountain[J]. Acta Petrologica Sinica, 21(3): 749-762 (in Chinese with English abstract).
Geng Jianzhen, Li Huaikun, Zhang Jian, Zhou Hongying, Li Huimin. 2010. Zircon Hf isotope analysis by means of LA-MC-ICP-MS[J]. Geological Bulletin of China, 30(10): 1508-1513 (in Chinese with English abstract).
Gerdes A, Zeh A. 2006. Combined U-Pb and Hf isotope LA-(MC-) ICP-MS analyses of detrital zircons: Comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany[J]. Earth and Planetary Science Letters, 249(1-2): 47-61. DOI:10.1016/j.epsl.2006.06.039
He Hongyun, Li Yinglei, Liu Huichuan, Liu Yongzheng, Zhang Haiping, Wang Dongxing, Guo Yonglie, Qin Jiangdong, Xiao Jianwei. 2020. Geochronology and geochemistry of the Middle Triassic magmatic rocks in the southeastern part of the Da Hinggan Mountains and their constraints on the tectonic evolution of Paleo-Asian Ocean[J]. Geological Bulletin of China, 39(7): 1046-1061 (in Chinese with English abstract).
Hilde T W C, Uyeda S, Kroenke L. 1977. Evolution of the western Pacificand its margin[J]. Tectonophysics, 38: 145-165. DOI:10.1016/0040-1951(77)90205-0
Hong Dawei, Wang Shi, Xie Xilin, Zhang Jisheng. 2000. Genesis of positive ε(Nd, t) granitoids in the Da Hinggan MTS: Mongolia orogenic belt and growth continental crust[J]. Earth Science Frontiers, 7(2): 441-456 (in Chinese with English abstract).
Hou Kejun, Li Yanhe, Zou Tianren, Qu Xiaoming, Shi Yuruo, Xie Guiqing. 2007. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications[J]. Acta Petrologica Sinica, 23(10): 2595-2604 (in Chinese with English abstract).
Iizuka T, Hirata T. 2005. Improvements of precision and accuracy in in situ Hf isotope microanalysis of zircon using the laser ablation-MC-ICPMS technique[J]. Chemical Geology, 220(1): 121-137.
Jahn B M, Wu F Y, Chen B. 2000. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic[J]. Transactions of the Royal Society of Edinburgh: Earth Sciences, 91(1/2): 181-193.
Jiang Sihong, Nie Fengjun, Bai Daming, Liu Yifei, Liu Yan. 2011. Geochronology evidence for Indosinian mineralization in Baiyinnuoer Pb-Zn deposit of Inner Mongolia[J]. Mineral Deposits, 30(5): 787-798 (in Chinese with English abstract).
Li Huaikun, Zhu Shixing, Xing Zhenqun, Su Wenbo, Lu Songnian, Zhou Hongying, Geng Jianzhen, Li Sheng, Yang Fengjie. 2010. Zircon U-Pb dating on tuff bed from Gaoyuzhuang Formation in Yanqing, Beijing: Further constraints on the new subdivision of the Mesoproterozoic stratigraphy in the northern North China Craton[J]. Acta Petrologica Sinica, 26(7): 2131-2141 (in Chinese with English abstract).
Li Huankhen, Geng Jianzhen, Hao Shuang, Zhang Yongqing, Li Huimin. 2009. Determination of U-Pb Isotopic Age of Zirconium by Laser Erosion Multireceiver Plasma Mass Spectrometer(LA-MC-ICPMS)[J]. Acta Mineralogica Sinica, 29(1): 600-601 (in Chinese with English abstract).
Li J Y. 2006. Permian geodynamic setting of Northeast China and adjacent regions[J]. Closure of the Paleo-Asian Earth Sciences, 26(3-4): 207-224. DOI:10.1016/j.jseaes.2005.09.001
Li Jianfeng, Wang Keyong, Quan Hongyan, Sun Fengyue, Zhao Laishi, Zhang Xuebing. 2016. Discussion on the magmatic evolution sequence and metallogenic geodynamical setting background Hongling Pb-Zn deposit in the southern Da Xing'an Mountains[J]. Acta Petrologica Sinica, 32(5): 1529-1542 (in Chinese with English abstract).
Li Jinyi, Gao Liming, Sun Guihua, Li Yaping, Wang Yanbin. 2007. Shuangjingzi middle Triassic syn-collisional crust-derived granite in the east Inner Mongolia and its constraint on the timing of collision between Siberian and Sino-Korean paleo-plates[J]. Acta Petrologica Sinica, 23(3): 565-582 (in Chinese with English abstract).
Li Mengxing. 2020. Geochemical characteristics and petrogenesis of Early Cretaceous monzonitic granite in the Mandu area, southern Da Hinggan Mountains[J]. Geological Bulletin of China, 39(Z1): 224-233 (in Chinese with English abstract).
Lin Qiang, Ge Wenchun, Wu Fuyuan, Sun Deyou, Cao Lin. 2004. Geochemistry of Mesozoic granites in Da Hinggan Ling ranges[J]. Acta Petrologica Sinica, 20(3): 403-412 (in Chinese with English abstract).
Liu Fang, Tian Jingxiong, An Baizhou, Zhao Dongsheng. 2019. Geochemistry and tectonic implication of monzonitic granite in the Hansumu Area in the south section of the Da Hinggan Mountains[J]. Geology and Exploration, 55(6): 1404-1415 (in Chinese with English abstract).
Liu Wei, Pan Xiaofei, Xie Liewen, Li He. 2007. Sources of material for the Linxi granitoids, the southern segment of the Da Hinggan Mts. : when and how continental crust grew[J]. Acta Petrologica Sinica, 23(2): 441-460 (in Chinese with English abstract).
Liu Wei, Yang Jinhui, Li Chaofeng. 2003. Thermochronology of three major faults in the Chifeng area, Inner Mongolia of China[J]. Acta Petrologica Sinica, 19(4): 717-725 (in Chinese with English abstract).
Liu Xiaoming, Gao Shan, Diwu Chunrong, Yuan Honglin, Hu Zhaochun. 2007. Simultaneous determination of LA-ICP-MS U-Pb age and micronutrient of single-grain Zircon by in-situ microanalysis of 20 μm spot bundles[J]. Chinese Science Bulletin, 52(2): 229-235 (in Chinese with English abstract).
Liu Y S, Gao S, Hu Z C, Gao C G, Zong K Q, Wang D B. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle Xenoliths[J]. Journal of Petrology, 51(1-2): 537-571. DOI:10.1093/petrology/egp082
Ludwig K R. 2003. User's Manual for Isoplot 3.0:A geochronological Toolkit for Microsoft Excel[M]. Berkeley Geochronology Center: Special Publication, 1-71.
Maruyama S. 1997. Pacific-type orogeny revisited: Miyashiro-type orogeny proposed[J]. Island Arc, 6(1): 91-120. DOI:10.1111/j.1440-1738.1997.tb00042.x
Meng En, Xu Wenliang, Yang Debin, Qiu Kunfeng, Li Changhua, Zhu Hongtao. 2011. Zircon U-Pb chronology, geochemistry of Mesozoic volcanic rocks from the Lingquan basin in Manzhouli area, and its tectonic implications[J]. Acta Petrologica Sinica, 27(4): 1209-1226 (in Chinese with English abstract).
Meng O R. 2003. What drove late Mesozoic extension of the northern China-Mongolia tract[J]. Teclonophysics, 369(3): 155-174.
Ouyang Hegen. 2013. Metallogenesis of Bairendaba-Weilasituo Silver-polytmetallic Deposit and Its Geodynamic Setting, in the Southern Segment of Great Xing'an Range, NE China[D]. China University of Geosciences (Beijing)(in Chinese with English abstract).
Patchett P J, Tatsumoto M. 1980. A routine high-precision method for Lu-Hf isotope geochemistry and chronology[J]. Contrib. Mineral. Petrol., 75(3): 263-267.
Peng Qingsong, Zhang Zhiqiang, Zhu Xinyou, Huang Xingkai, Xu Qiao. 2017. U-Pb age of zircon mineral in Huaganzigou pluton and its geological significance in central and southern part of the Da Hinggan Mountains[J]. Mineral Exploration, 8(6): 927-936 (in Chinese with English abstract).
Scherer E E, Cameron K L, Blichert T J. 2000. Lu-Hf garnet geochronology: Closure temperature relative to the Sm-Nd system and the effects of trace mineral inclusions[J]. Geochimica et Cosmochimica Acta, 64(19): 3413-3432. DOI:10.1016/S0016-7037(00)00440-3
Sengor A M C, Natal'in B A, Burtman V S. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature, 364(6435): 299-307. DOI:10.1038/364299a0
Shao Ji'an, Zhang Lüqiao, Mou Baolei. 1999a. Magmatism in the Mesoxoic extending orogenic process of Da Hingan Mts[J]. Earth Science Frontiers, (4): 339-346 (in Chinese with English abstract).
Shao Ji'an, Zhang Lüqiao, Xiao Qinghui, Li Xiaobo. 2005. Rising of Da Hinggan Mts in Mesozoic: A possible mechanism of intracontinental orogeny[J]. Acta Petrologica Sinica, 21(3): 789-794 (in Chinese with English abstract).
Shao Lian, Han Qingjun, Zhang Lüqiao, Mou Baolei. 1999b. Discovery of Early Mesozoic Collapsed Miscellaneous Capture in Eastern Inner Mongolia[J]. Chinese Science Bulletin, 44(5): 478-485 (in Chinese with English abstract). DOI:10.1360/csb1999-44-5-478
Stille P, Steiger R H. 1991. Hf isotope systematics in granitoids from the central and Southern Alps[J]. Contributions to Mineralogy and Petrology, 107(3): 273-278. DOI:10.1007/BF00325098
Sun Deyou, Wu Fuyuan, Lu Xiaoping. 2001. Lin qiang, Petrogenesis and crust-mantle interaction of early Yanshanian Baishishan pluton in Zhangguangcai Range[J]. Acta Petrologica Sinica, 17(2): 227-235 (in Chinese with English abstract).
Sun Deyou, Xu Wenliang, Zhou Yan. 1994. Formation Mechanism of Mesozoic volcanic rocks in Greater Khingan[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 3: 162-164 (in Chinese with English abstract).
Vervoort J D, Patchett P J. 1996. Behavior of hafnium and neodymium isotopes in the crust: Constraints from Precambrian crustally derived granites[J]. Geochimica et Cosmochimica Acta, 60(19): 3717-3733. DOI:10.1016/0016-7037(96)00201-3
Vervoort J D, Patchett P J, Gehrels G E, Nutman A P. 1996. Constraints on early earth differentiation from and neodymiun isotopes[J]. Nature, 379(6566): 624-627. DOI:10.1038/379624a0
Wang Changming, Zhang Shouting, Deng Jun. 2006. The metallogenic space-time structure of copper-polymetallic deposits in the southern segment of Da Hinggan Mountains, China[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 33(5): 478-484 (in Chinese with English abstract).
Wang Lan, Yang Liqin, Wang Yaping, Zhang Yong, Chen Xue, Feng Liang, Chen Zhansheng. 2012. In Situ U-Pb dating and trace element simultaneity determination of zircon by LA-ICP-MS[J]. Acta Geoscientica Sinica, 33(5): 763-772 (in Chinese with English abstract).
Wang T, Tong Y, Zhang L, Li S, Huang H, Zhang J J, Guo L, Yang Q D, Hong D W, Donskaya T. 2017. Phanerozoic granitoids in the central and eastern parts of Central Asia and their tectonic significance[J]. Journal of Asian Earth Sciences, 145(B): 368-392.
Wang T, Zheng Y D, Zhang J J. 2011. Pattern and kinematic polarity of late Mesozoic extension in continental NE Asian: Perspectives from metamorphic core complexes[J]. Tectonics, 30(6): 7-33.
Wang Xi, Ren Xigang, Wang Yan, Hao Fujiang, Pei Yao, Lou Renxing, Xu Chengke. 2018. Zircon U-Pb ages and geochemical characteristics of the quartz monzonite diorite rocks from Hanmiao area in the southern segment of the Da Hinggan Mountains[J]. Geological Bulletin of China, 37(9): 1662-1670 (in Chinese with English abstract).
Wang Yilong, Ao Guang, Wang Haipeng, Wang Zhongjiang, Wang Qi, Zhong Mishan, Tan Chao, Yang Yunlai, Li Zhuo, Zhu Mingwei, Ke Kunjia. 2019. Zircon U-Pb geochronology, geochemistry and tectonic significance of Early Cretaceous granites in Suolun Area of Central Da Hinggan Mountains[J]. Geological Science and Technology Information, 38(1): 45-57 (in Chinese with English abstract).
Wu F Y, Yang Y H, Xie L W, Yang J H, Xu P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology[J]. Chemical Geology, 234(1/2): 105-126.
Wu F Y, Sun D Y, Ge W C, Zhang Y B. 2011. Geochronology of the Phanerozoic granitoids in northeastern China[J]. Journal of Asian Earth Sciences, 41(1): 1-30. DOI:10.1016/j.jseaes.2010.11.014
Wu Fuyuan, Ge Wenchun, Sun Deyou, Guo Chunli. 2003. Discussions on the lithospheric thinning in eastern China[J]. Earth Science Frontiers, 10(3): 51-60 (in Chinese with English abstract).
Wu Fuyuan, Li Xianhua, Zheng Yongfei, Gao Shan. 2007. Lu-Hf isotopic systematics and their applications in petrology[J]. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract).
Wu Yuanbao, Zheng Yongfei. 2004. Study on genesis Mineralogy of zirconium and its restriction on the interpretation of U-Pb age[J]. Chinese Science Bulletin, 49(16): 1589-1604 (in Chinese). DOI:10.1360/csb2004-49-16-1589
Xiao W J, Windley B F, Hao J, Zhai M G. 2003. Accretion leading to collision and the Permian Solonker suture, Lnner Mongolia, Chian: Termrmination of the central Asian orogentic belt[J]. Tectonics, 22(6): l069.
Xu W L, Pei F P, Wang F, Wang F, Meng E, Ji W Q, Yang D B, Wang W. 2013. Spatial-temporal relationships of Mesozoic volcanic rocks in NE China: constraints on tectonicoverprinting and transformations between multiple tectonic regimes[J]. Journal of Asian Earth Sciences, 74(25): 167-193.
Xu Wenliang, Wang Feng, Pei Fuping, Meng En, Tang Jie, Xu Meijun, Wang Wei. 2013. Mesozoic tectonic regimes and regional ore-forming background in NE China: Constraints from spatial and temporal variations of Mesozoic volcanic rock associations[J]. Acta Petrologica Sinica, 29(2): 339-353 (in Chinese with English abstract).
Yang J H, Wu F Y, Shao J A, Wilde S A, Xie L W, Liu X M. 2006. Constrains on the timing of uplift of the Yanshan fold and thrust belt, North China[J]. Earth and Planetary Science Letters, 246(3/4): 336-352.
Yang Qidi, Guo Lei, Wang Tao, Zeng Tao, Zhang Lei, Tong Ying, Shing Xingjun, Zhang Jianjun. 2014. Geochronology, origin, sources and tectonic settings of Late Mesozoic two-stage granites in the Ganzhuermiao region, central and southern Da Hinggan Range, NE China[J]. Acta Petrologica Sinica, 30(7): 1961-1981 (in Chinese with English abstract).
Yao Lei, Lu Zhicheng, Ye Tianzhu, Pang Zhenshan, Jia Hongxang, Zhang Zhihui, Wu Yunfeng, Li Ruihua. 2017. Zircon U-Pb age, geochemical and Nd-Hf isotopic characteristics of quartz porphyry in the Baiyinchagan Sn polymetallic deposit, Inner Mongolia, southern Great Xing'an Range, China[J]. Acta Petrologica Sinica, 33(10): 3183-3199 (in Chinese with English abstract).
Ying J F, Zhou X H, Zhang L C, Wang F. 2010. Geochronological framework of Mesozoic volcanic rocks in the Great Xing'an Rang, NE China, and their geodynamic implication[J]. Jorunal of Asian Earth Sciences, 39(6): 786-793. DOI:10.1016/j.jseaes.2010.04.035
Yuan H L, Gao S, Dai M N, Zong C L, Gunther D, Fontaine G H, Liu X M, Diwu C. 2008. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS[J]. Chemical Geology, 247(1-2): 100-118. DOI:10.1016/j.chemgeo.2007.10.003
Yuan Hongin, Gao Shan, Liu Xiaoming, Li Huimin, Gunther D, Wu Fuyuan. 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry[J]. Geostandards and Geoanalytical Reserch, 28(3): 353-370. DOI:10.1111/j.1751-908X.2004.tb00755.x
Zhang D Y, Zhang Z C, Encarnación J, Xue C J, Duan S G, Zhao Z D, Liu J L. 2012. Petrogenesis of the Kekesai composite porphyry intrusion, western Tianshan, NW China: Implications for metallogenesis, tectonic evolution and continental growth during Late Paleozoic time[J]. Lithos, 146/147: 65-79. DOI:10.1016/j.lithos.2012.04.002
Zhang Dequan. 1993. Two granitoid series in different tectonic environments of southern Da Hingan mountains, China[J]. Acta Petrologica et Mineraloglca, 12(1): 1-11 (in Chinese with English abstract).
Zhang Dequan, Zhao Yiming. 1993. Proceedings of Copper Polymetallic Deposits in Da Hinggan and Neighbourhood[J]. Beijing: Seismological Press, 22-24(in Chinese with English abstract).
Zhang J H, Gao S, Ge W C, Wu F Y, Yang J H, Wilde S A, Li M. 2010. Geochronology of the Mesozoic volcanic rocks in the Great Xing'an Rang, Northeastern China: Implications for subduction induced delamination[J]. Chemical Geology, 276(3): 144-165.
Zhang J H, Ge W C, Wu F Y, Wilde S A, Yang J H, Liu X M. 2008. Large scale Early Cretaceous volcanic events in the northern Great Xing'an Range, Northeastern China[J]. Lithos, 102(1): 138-157.
Zhang K J, Yan L L, Ji C. 2019. Switch of NE Asia from extension to contraction at the mid-Cretaceous: A tale of the Okhotsk oceanic plateau from initiation by the Perm Anomaly to extrusion in the Mongol-Okhotsk ocean?[J]. Earth-Science Reviews, 198: 102941. DOI:10.1016/j.earscirev.2019.102941
Zhang Lianchang, Chen Zhiguang, Zhou Xinhua, Ying Jifeng, Wang Fei, Zhang Yutao. 2007. Characteristics of deep sources and tectonic-magmatic evolution of the Early Cretaceous voleanics in Genhe area, Da-Hinggan Mountains: Constraints of Sr-Nd-Pb-Hf isotopic geochemistries[J]. Acta Petrologica Sinica, 23(11): 2823-2835 (in Chinese with English abstract).
Zhang Xiaodong, Yu Qing, Chen Fajing, Wang Xinwen. 2000. Structural characteristics, origin and evolution of metamorphic core complex in central basement uplift and Xujiaweizi faulted depression in Songliao Basin, Northeast China[J]. Earth Science Frontiers, 7(4): 411-419 (in Chinese with English abstract).
Zhang Xiaofei, Teng Chao, Zhou Yi, Wang Biren, Cao Jun, Li Shucai, Zhang Huachuan, Pang Zhenshan, Liu Junlai. 2019. Geochronology and geochemistry of the Late Permian to Early-Middle Triassic granites in Xiwu Banner, Inner Mongolia and its tectonic significance[J]. Acta Geologica Sinica, 93(3): 1903-1927 (in Chinese with English abstract).
Zhang Xingzhou, Ma Yuxia, Chi Xiaoguo, Zhang Fengxu, Sun Yuewu, Guo Ye. 2012. Discussion on Phanerozoic tectonic evolution in Northeastern China[J]. Journal of Jilin University(Earth Science Edition), 42(5): 1269-1285 (in Chinese with English abstract).
Zhang Yongzheng, Li Xiurong, Yang Hongzhi, Shao Jun. 2007. Structural conditions of copper-polymetallic mineralization in the southeast section of Daxinganling mountains[J]. Geology and Resources, 16(1): 38-41 (in Chinese with English abstract).
Zhang L C, Zhou X H, Ying J F. 2008. Geochemistry and Sr-Nd-Pb-Hf isotopes of Early Cretaceous basalts from the GreatXinggan Range, NE China: Implications for their origin andmantle source characteristics[J]. Chemical Geology, 256: 12-23. DOI:10.1016/j.chemgeo.2008.07.004
Zhao Hui, Li Shan, Wang Tao, Wang Wenzhi, Jiao Yongyan. 2005. Age petrogenesis and tectonic implications of the Early Cretaceous magmatism in the Huanggangliang area, southern Da Hinggan Mountains[J]. Geological Bulletin of China, 34(12): 2203-2218 (in Chinese with English abstract).
Zhao Yue, Yang Zhenyu, Ma Xinghua. 1994. Geotectonic transition from paleoasian system and paleotethyan system to paleopacific active continental margin in eastern Asia[J]. Chinese Journal of Geology, 29(2): 105-119 (in Chinese with English abstract).
Zhou Chenglin, Tang Youjun, Liu Bin. 2019. Typical mudstone of the lower Permian Shoushangou Formation in middle-south Daxinganling mountains: Geochemical characteristics and geological implications[J]. Geology and Resources, 28(2): 140-148 (in Chinese with English abstract).
Zhou Zhenhua, Lu Linsu, Yang Yongjun, Li Tao. 2010. Petrogenesis of the Early Cretaceous A-type granite in the Huanggang Sn-Fe deposit, Inner Mongolia: Constraints from zircon U-Pb dating and geochemistry[J]. Acta Petrologica Sinica, 26(12): 3521-3537 (in Chinese with English abstract).
Zhou Zhenhua, Wu Xinli, Ouyang Hegen. 2012. LA-ICP-MS zircon U-Pb dating and Hf isotope study of the plagioclase granite porphyry in the Lianhuashan Cu-Ag deposit of Inner Mongolia and its geological significance[J]. Geology in China, 39(6): 1472-1485 (in Chinese with English abstract).
Zhu Dicheng, Zhao Zhidan, Niu Yaoling. 2011. Lhasa terrane insouthern Tibet came from Australia[J]. Geology, 39: 727-730. DOI:10.1130/G31895.1
丁坤, 梁婷, 周义, 凤永刚, 张泽, 丁亮, 李侃. 2020. 西昆仑大红柳滩黑云母二长花岗岩岩石成因: 来自锆石U-Pb年龄及Li-Hf同位素的证据[J]. 西北地质, 53(1): 24-34.
葛文春, 林强, 孙德有, 吴福元, 元钟宽, 李文远, 陈明植, 尹成孝. 1999. 大兴安岭中生代玄武岩的地球化学特征: 壳幔相互作用的证据[J]. 岩石学报, 15(3): 396-406.
葛文春, 吴福元, 周长勇, 张吉衡. 2005. 大兴安岭中部乌兰浩特地区中生代花岗岩的锆石U-Pb年龄及地质意义[J]. 岩石学报, 21(3): 749-762.
耿建珍, 李怀坤, 张健, 周红英, 李惠民. 2011. 锆石Hf同位素组成的LA-ICP-MS测定[J]. 地质通报, 30(10): 1508-1513. DOI:10.3969/j.issn.1671-2552.2011.10.004
贺宏云, 李英雷, 刘汇川, 柳永正, 张海平, 王东星, 郭永烈, 秦江东, 肖剑伟. 2020. 大兴安岭东南段中三叠世岩浆岩年代学、地球化学特征及其对古亚洲洋构造演化时限的制约[J]. 地质通报, 39(7): 1046-1061.
洪大卫, 王式, 谢锡林, 张季生. 2000. 兴蒙造山带正ε(Nd, t)值花岗岩的成因和大陆地壳生长[J]. 地学前缘, 7(2): 441-456. DOI:10.3321/j.issn:1005-2321.2000.02.012
侯可军, 李延河, 邹天人, 曲晓明, 石玉若, 谢桂青. 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J]. 岩石学报, 23(10): 2595-2604. DOI:10.3969/j.issn.1000-0569.2007.10.025
江思宏, 聂凤军, 白大明, 刘翼飞, 刘妍. 2011. 内蒙古白音诺尔铅锌矿床印支期成矿的年代学证据[J]. 矿床地质, 30(5): 787-798. DOI:10.3969/j.issn.0258-7106.2011.05.003
李怀坤, 耿建珍, 郝爽, 张永清, 李惠民. 2009. 用激光烧蚀多接收器等离子体质谱仪(LA-MC-ICPMS)测定锆石U-Pb同位素年龄的研究[J]. 矿物学报, 29(1): 600-601.
李怀坤, 朱士兴, 相振群, 苏文博, 陆松年, 周红英, 耿建珍, 李生, 杨锋杰. 2010. 北京延庆高于庄组凝灰岩的锆石U-Pb定年研究及其对华北北部中元古界划分新方案的进一步约束[J]. 岩石学报, 26(7): 2131-2141.
李剑锋, 王可勇, 权鸿雁, 孙丰月, 赵来时, 张雪冰. 2016. 大兴安岭南段红岭铅锌矿床岩浆演化序列与成矿动力学背景探讨[J]. 岩石学报, 32(5): 1529-1542.
李锦轶, 高立明, 孙桂华, 李亚萍, 王彦斌. 2007. 内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束[J]. 岩石学报, 23(3): 565-582.
李猛兴. 2020. 大兴安岭南段满都地区早白垩世二长花岗岩地球化学特征及成因[J]. 地质通报, 39(Z1): 224-233.
林强, 葛文春, 吴福元, 孙德有, 曹林. 2004. 大兴安岭中生代花岗岩类的地球化学[J]. 岩石学报, 20(3): 403-412.
刘芳, 田景熊, 安百州, 赵东升. 2019. 大兴安岭南段罕苏木地区二长花岗岩地球化学特征及其构造意义[J]. 地质与勘探, 55(6): 1404-1415.
刘伟, 潘小菲, 谢烈文, 李禾. 2007. 大兴安岭南段林西地区花岗岩类的源岩: 地壳生长的时代和方式[J]. 岩石学报, 23(2): 441-460.
刘伟, 杨进辉, 李潮峰. 2003. 内蒙赤峰地区若干主干断裂带的构造热年代学[J]. 岩石学报, 19(4): 717-725.
柳小明, 高山, 第五春容, 袁洪林, 胡兆初. 2007. 单颗粒锆石的20μm小斑束原位微区LA-ICP-MSU-Pb年龄和微量元素的同时测定[J]. 科学通报, 52(2): 229-235.
孟恩, 许文良, 杨德彬, 邱昆峰, 李长华, 祝洪涛. 2011. 满洲里地区灵泉盆地中生代火山岩的锆石U-Pb年代学、地球化学及其地质意义[J]. 岩石学报, 27(4): 1209-1226.
欧阳荷根. 2013. 大兴安岭南段拜仁达坝-维拉斯托银多金属矿床成矿作用及动力学背景[D]. 中国地质大学(北京).
彭青松, 张志强, 祝新友, 黄行凯, 徐巧. 2017. 大兴安岭中南段桦杆子沟岩体锆石U-Pb年龄及其地质意义[J]. 矿产勘查, 8(6): 927-936. DOI:10.3969/j.issn.1674-7801.2017.06.003
邵济安, 韩庆军, 张履桥, 牟保磊. 1999b. 内蒙古东部早中生代堆积杂岩捕虏体的发现[J]. 科学通报, 44(5): 478-485.
邵济安, 张履桥, 牟保磊. 1999a. 大兴安岭中生代伸展造山过程中的岩浆作用[J]. 地学前缘, 6(4): 339-346.
邵济安, 张履桥, 肖庆辉, 李晓波. 2005. 中生代大兴安岭的隆起——一种可能的陆内造山机制[J]. 岩石学报, 21(3): 789-794.
孙德有, 吴福元, 林强, 路孝平. 2001. 张广才岭燕山早期白石山岩体成因与壳幔相互作用[J]. 岩石学报, 17(2): 227-235.
孙德有, 许文良, 周燕. 1994. 大兴安岭中生代火山岩的形成机制[J]. 矿物岩石地球化学通讯, 3: 162-164.
王岚, 杨理勤, 王亚平, 张勇, 陈雪, 冯亮, 陈占生. 2012. 锆石LA-ICP-MS原位微区U-Pb定年及微量元素的同时测定[J]. 地球学报, 33(5): 763-772.
王晰, 任锡刚, 汪岩, 郝福江, 裴尧, 楼仁兴, 徐承科. 2018. 大兴安岭南段罕庙地区石英二长闪长岩锆石U-Pb年龄及地区化学特征[J]. 地质通报, 37(9): 1662-1670.
王艺龙, 敖光, 王海鹏, 王忠江, 王岐, 仲米山, 谭超, 杨运来, 李琢, 牛明伟, 柯坤家. 2019. 大兴安岭中段索伦地区早白垩世花岗岩锆石U-Pb年代学、地球化学及构造意义[J]. 地质科技情报, 38(1): 45-57.
王长明, 张寿庭, 邓军. 2006. 大兴安岭南段铜多金属矿成矿时空结构[J]. 成都理工大学学报(自然科学版), 33(5): 478-484. DOI:10.3969/j.issn.1671-9727.2006.05.008
吴福元, 葛文春, 孙德有, 郭春丽. 2003. 中国东部岩石圈减薄研究中的几个问题[J]. 地学前缘, 10(3): 51-60. DOI:10.3321/j.issn:1005-2321.2003.03.004
吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 23(2): 185-220.
吴元宝, 郑永飞. 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 49(16): 1589-1604. DOI:10.3321/j.issn:0023-074X.2004.16.002
张德全, 赵一鸣. 1993. 大兴安岭及邻区铜多金属矿床论文集[M]. 北京: 地震出版社, 22-24.
许文良, 王枫, 裴福萍, 孟恩, 唐杰, 徐美君, 王伟. 2013. 中国东北中生代构造体制与区域成矿背景: 来自中生代火山岩组合时空变化的制约[J]. 岩石学报, 29(2): 339-353.
杨奇荻, 郭磊, 王涛, 曾涛, 张磊, 童英, 史兴俊, 张建军. 2014. 大兴安岭中南段甘珠尔庙地区晚中生代两期花岗岩的时代、成因、物源及其构造背景[J]. 岩石学报, 30(7): 1961-1981.
姚磊, 吕志成, 叶天竺, 庞振山, 贾宏翔, 张志辉, 吴云峰, 李睿华. 2017. 大兴安岭南段内蒙古白音查干Sn多金属矿床石英斑岩的锆石U-Pb年龄、地球化学和Nd-Hf同位素特征及地质意义[J]. 岩石学报, 33(10): 3183-3199.
张德全. 1993. 大兴安岭南段不同构造环境中的两类花岗岩[J]. 岩石矿物学杂志, 12(1): 1-11.
周成林, 唐友军, 刘彬. 2019. 大兴安岭中南段下二叠统寿山沟组典型泥岩地球化学特征及其地质意义[J]. 地质与资源, 28(2): 140-148. DOI:10.3969/j.issn.1671-1947.2019.02.005
张连昌, 陈志广, 周新华, 英基丰, 王非, 张玉涛. 2007. 大兴安岭根河地区早白垩世火山岩深部源区与构造-岩浆演化: Sr-Nd-Pb-Hf同位素地球化学制约[J]. 岩石学报, 23(11): 2823-2835. DOI:10.3969/j.issn.1000-0569.2007.11.013
张晓东, 余青, 陈发景, 汪新文. 2000. 松辽孟地变质核杂岩和伸展断陷的构造特征及成因[J]. 地学前缘, 7(4): 411-419. DOI:10.3321/j.issn:1005-2321.2000.04.008
张晓飞, 滕超, 周毅, 王必任, 曹军, 李树才, 张华川, 庞振山, 刘俊来. 2019. 内蒙古西乌旗地区晚二叠世-早中三叠世花岗岩年代学和地球化学特征及构造意义[J]. 地质学报, 93(3): 1903-1927.
张兴洲, 马玉霞, 迟效国, 张凤旭, 孙跃武, 郭冶, 曾振. 2012. 东北及内蒙古东部地区显生宙构造演化的有关问题[J]. 吉林大学学报(地球科学版), 42(5): 1269-1285.
张永正, 李秀荣, 杨宏智, 邵军. 2007. 大兴安岭东南段铜多金属成矿构造条件[J]. 地质与资源, 16(1): 38-41. DOI:10.3969/j.issn.1671-1947.2007.01.008
赵辉, 李舢, 王涛, 王文志, 焦永艳. 2015. 大兴安岭南段黄岗梁地区早白垩世岩浆作用的时代、成因及其构造意义[J]. 地质通报, 34(12): 2203-2218. DOI:10.3969/j.issn.1671-2552.2015.12.007
赵越, 杨振宇, 马醒华. 1994. 东亚大地构造发展的重要转折[J]. 地质科学, 29(2): 105-119.
周振华, 吕林素, 杨永军, 李涛. 2010. 内蒙古黄岗锡铁矿区早白垩世A型花岗岩成因: 锆石U-Pb年代学和岩石地球化学制约[J]. 岩石学报, 26(12): 3521-3537.
周振华, 武新丽, 欧阳荷根. 2012. 内蒙古莲花山铜银矿斜长花岗斑岩LA-MC-ICP-MS锆石U-Pb测年、Hf同位素研究及其地质意义[J]. 中国地质, 39(6): 1472-1485. DOI:10.3969/j.issn.1000-3657.2012.06.002