文章快速检索    
 
  中国地质 2022, Vol. 49 Issue (2): 472-484  
0
引用本文
陈洋, 唐洪明, 廖纪佳, 罗超, 赵圣贤, 郑马嘉, 钟权. 2022. 基于埋深变化的川南龙马溪组页岩孔隙特征及控制因素分析[J]. 中国地质, 49(2): 472-484.  
Chen Yang, Tang Hongming, Liao Jijia, Luo Chao, Zhao Shengxian, Zheng Majia, Zhong Quan. 2022. Analysis of shale pore characteristics and controlling factors based on variation of buried depth in the Longmaxi Formation, Southern Sichuan Basin[J]. Geology in China, 49(2): 472-484. (in Chinese with English abstract).  

基于埋深变化的川南龙马溪组页岩孔隙特征及控制因素分析
陈洋1, 唐洪明1, 廖纪佳1, 罗超2, 赵圣贤2, 郑马嘉2, 钟权3    
1. 西南石油大学地球科学与技术学院,四川 成都 610500;
3. 中国石油西南油气田公司,四川 成都 610056;
3. 中国石油化工 股份有限公司西北石油局石油工程技术研究院,新疆 乌鲁木齐 830011
摘要[研究目的] 中国浅层-中深层页岩气勘探开发技术已经趋于成熟,深层页岩成为下一步勘探开发的重点,探明不同埋深条件下页岩的孔隙特征及其控制因素利于推动深层页岩的评优选区工作。[研究方法] 本文基于核磁共振、场发射扫描电镜和X-射线衍射等实验分析手段,对比性评价了川南地区不同深度的龙马溪组页岩孔隙度、孔隙结构参数特征并进行影响因素分析。[研究结果] 随着埋深的增加,总孔隙度呈现下降的趋势; 3000 m以浅、3000~3500 m和3500 m以深页岩孔隙度主体分别为4%~8%、3%~7%和3%~6%。不同埋深龙马溪组页岩孔隙类型与大小分布无显著差异,各深度段页岩均发育大量纳米级有机质孔隙、矿物粒间孔、粒内溶孔和微裂缝。[结论] 高U/Th比和低Ti含量下形成的丰富有机质是深层页岩孔隙发育的关键因素; 高硅质矿物含量和高地层压力系数对页岩储层孔隙起到了保护作用,减缓了上覆地层的压实作用,但埋深过大仍会导致页岩孔隙减少、孔隙度降低。
关键词四川盆地    页岩气    龙马溪组    孔隙度    孔隙特征    压力系数    深度    油气勘查工程    
中图分类号:P618.13            文献标志码:A             文章编号:1000-3657(2022)02-0472-13
Analysis of shale pore characteristics and controlling factors based on variation of buried depth in the Longmaxi Formation, Southern Sichuan Basin
CHEN Yang1, TANG Hongming1, LIAO Jijia1, LUO Chao2, ZHAO Shengxian2, ZHENG Majia2, ZHONG Quan3    
1. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, Sichuan, China;
3. Petrochina Southwest Oil & Gasfield Company, Chengdu 610056, Sichuan, China;
3. Petroleum Engineering Technology Research Institute, Sinopec Northwest China Petroleum Bureau, Urumqi 830011, Xinjiang, China
Abstract: This paper is the result of oil and gas exploration engineering.
[Objective] With the maturity of exploration and development technology in shallow and medium-deep shale, deep shale has become a focus of next exploration and developmentin China. Clarifying the pore characteristics of shale under different burial depths and its controlling factors is conducive to promoting the selection and evaluation of deep shale gas. [Methods] Methods such as nuclear magnetic resonance, field emission scanning electron microscopy and X-ray diffraction were used to comparatively evaluate the porosity and pore structure of Longmaxi-Formation in southern Sichuan Basin, and its influencing factors were also discussed. [Results] With the increase of burial depth, the total porosity shows a downward trend, and the main porosity of shale below 3000 m, between 3000-3500 m and deeper than 3500 m are 4%-8%, 3%-7% and 3%-6%, respectively.There is no significant difference in pore types and size distribution of the Longmaxi Formation shale at different depths, and a large number of nano-scale organic pores, mineral intergranular pores, intragranular dissolved pores and micro-fractures are developed at different depth. [Conclusions] A large amount of organic matter formed at high U/Th ratio and low Ti content is the key factor for the development of deep shale pores. High siliceous mineral content and high formation pressure coefficient could protect pores of shale reservoirs and slow down compaction of its overlying strata. However, excessive burial depth wouldalso lead to a reduction of shale pores and porosity.
Key words: Sichuan Basin    shale gas    Longmaxi Formation    porosity    pore characteristics    pressure coefficient    depth    oil and gas exploration engineering    

1 引言

中国页岩气勘探开发已有十余年的发展,实现了巨大的突破,现已建成重庆涪陵、四川长宁、威远和云南昭通等国家级页岩气开发区(董大忠等,2012刘若冰,2015邹才能等,2016Zhai et al., 2018)。目前主要开采的是中浅层—中深层页岩气(500~3500 m),而资源量更大的深层页岩气(3500~ 4500 m)资源尚未得到有效开发(董大忠等,2016),仅四川盆地南部(后简称川南)深层页岩气的可工作面积与资源量是中浅层—中深层的7倍以上(龙胜祥等,2016马新华等,2018赵文智等,2020),深层页岩气的突破是页岩气“增产”与“上储”的关键(王世谦,2017),也是实现“碳中和”目标的重要举措(马欢等,2021)。页岩气藏属非常规气藏,良好的地层物性条件是获得工业性气流的关键(郭秀英等,2015廖东良等,2019)。四川盆地及周边地区五峰组—龙马溪组深层页岩地面静态测试孔隙度主体为5%~6%,在覆压条件下30 MPa时,孔隙度下降约15%(何冶亮等,2020);其中川南深层富有机质页岩具有良好的保存条件,异常高压条件使得孔隙得以保存,孔隙度平均值一般在5%左右(龙胜祥等,2018);不同井孔隙类型相同,均以有机孔为主体,常见粒缘缝和微层理缝等(刘伟新等,2020Lu et al., 2020);有机质丰度与石英含量是影响深层龙马溪组页岩孔隙发育的关键因素,决定了孔隙体积(张梦琪等,2019)。

随着埋深的增加,页岩气储层孔隙与孔隙类型特征,以及有机质是否闭合是亟需解决的问题。利用核磁共振、场发射扫描电镜、XRD分析等手段,对比性评价川南长宁、泸州和威远区块页岩气主产层——龙一1亚段页岩不同深度孔隙度、孔隙结构等参数特征,进一步明确页岩孔隙随埋深的变化关系以及各种因素对孔隙的影响,以期为深层页岩气的勘探开发提供一定依据。

2 地质背景

四川盆地构造上属于扬子台地的西部,在晚奥陶世—早志留世分别沉积了五峰组和龙马溪组海相页岩地层(郑和荣等,2013聂海宽等,2017)。早志留世在“三隆夹一坳”的构造格局下,因冰川消融、海平面快速升高,在半闭塞盆地内形成大面积缺氧的深水陆棚环境,沉积了龙马溪组富含笔石的黑色页岩,且整体上有水体逐渐变浅的变化趋势(郭英海等,2004牟传龙等,2011王同等,2015)。五峰组—龙马溪组页岩岩相主要为硅质页岩和混合质页岩,厚度变化较大,在盆内南部、东北部以及北部厚度介于300~600 m(王玉满等,2015);受乐山—龙女寺隆起、黔中古陆和湘鄂西水下高地的影响,川南泸州地区富有机质页岩沉积最厚,达到50 m(马新华等,2018)。

此次研究的龙一1亚段位于龙马溪组底部,由下至上进一步细分为4个小层,即龙一11-4小层,地层代号S1l11-4(郑和荣等,2013赵圣贤等,2016)。长宁、泸州及威远三个工区从南至北依次展布,长宁区块有N201、N203、N208等井,龙马溪组页岩埋深主要在2000~3500 m;泸州区块有Yang101、Lai101等井,埋深主要在3500~4500 m,属深层范围;威远区块有Wei206、Zhen101井,埋深介于3500~4000 m(图 1)。

图 1 川南地区沉积特征与井位分布图(修改自马新华等,2018) Fig. 1 Sedimentary characteristics and well location in Southern Sichuan Basin (modified from Ma Xinhua et al., 2018)
3 样品及实验方法

实验样品选取于川南长宁、泸州与威远三个工区不同深度的钻井取心,主要特征为黑色页岩,笔石与层理发育。实验前将先将样品进行加工,部分样品加工成标准的圆柱状,直径25 mm,长30~50 mm,部分实验用碎样。气测法孔隙度采用美国CoreLab公司制造的CMS-300型非常规孔渗仪进行测定,选用高纯度氦气作为工作介质,测得结果为氦气孔隙度(简称孔隙度)。核磁共振实验(NMR)采用苏州纽迈公司生产的低场核磁共振仪,实验场强为0.5 T,主频率为23 MHz;实验室内温度为常温,磁体温度为恒定的32℃;页岩样品核磁共振T2谱的等待时间设置为10000 ms,实验测量的回波间隔设定为0.1 ms,回波个数为5000。页岩样品新鲜面置于Leica EM Ace 200型镀膜仪器下进行表面镀金膜后,再置于Quanta 650型场发射扫描电镜仪下对镀膜面进行直接观察可得到样品微观特征照片。X-射线衍射实验采用BRUKER D8 ADVANCE型衍射仪,应用K值法标定页岩矿物组分;使用CS230HC型碳硫分析仪对页岩样品进行TOC分析。

4 埋深对页岩气储层孔隙度的影响

常规储层因成岩作用、地层压实作用等因素,往往存在有效的物性下限,有效物性下限与深度存在一定的函数关系(王健等,2011周立明,2016张鹏飞等,2016);而页岩作为非常规储层,孔隙主要以纳米级孔隙为主,孔隙度随埋深变化规律并不清楚。为探究孔隙度与埋深规律,同时排除TOC差异过大导致的影响,选用不同埋深龙一1亚段页岩氦气孔隙度进行统计分析。

4.1 典型井埋深与孔隙度的关系

选取2500 m、3500 m与4000 m三个埋深级别的典型井(N201、Zhen101与Lai101)进行对比分析(图 2)。对于单井而言,不论是浅埋藏还是深埋藏,孔隙度纵向上随深度变化不明显,与TOC含量呈正相关性,换言之页岩气储层中TOC含量是控制储层发育的关键参数。对比三口井发现,N201井埋深最浅,孔隙度最高,主体为4%~8%(图 2 a);Zhen101井孔隙度主体在4%左右,纵向变化幅度较小(图 2 b);Lai101井(图 2 c)埋深最大,孔隙度主体在3%~5%,最高不超过6%。分布频率图能更清晰地反映处于三个深度级别的典型井孔隙度差异特征,N201井呈现“三峰”特征,孔隙度值分布范围广,最大在10%以上,主峰为6%~7%;Zhen101与Lai101井孔隙度分布为“单峰”形态,孔隙度值以3%~5%为主(图 3)。

图 2 典型井龙马溪组页岩TOC和孔隙度对比图 Fig. 2 TOC and porosity of Longmaxi Formation from typical wells
图 3 典型井龙马溪组页岩孔隙度分布频率 Fig. 3 Shale porosity distribution of Longmaxi Formation from typical wells
4.2 孔隙度与埋深相关性分析

统计研究区共计17口井龙一11-3小层富有机质页岩共440个样品孔隙度值与埋深散点图。整体上,随着埋深大幅度增加,孔隙度呈现降低的趋势,R2为0.1765;孔隙度主要分布范围从4%~8%降低到3%~6%,3500 m以深页岩孔隙度虽仍有较大值,但属于个例(图 4)。从三个深度段页岩孔隙度分布频率图来看,埋深小于3000 m时,从2%到≥10%均有分布,孔隙度值分布区间较广,主体在3%~8%区间内;埋深3000~3500 m,整体上孔隙度值呈现减少趋势,主体在3%~7%,无7%以上值;埋深大于3500 m,孔隙度值进一步降低,主峰为3%~4%,孔隙度主体在3%~6%(图 5)。

图 4 川南龙马溪组富有机质页岩孔隙度与埋深关系图 Fig. 4 Relationship between porosity and depth of organic-rich shale from Longmaxi Formation in Southern Sichuan Basin
图 5 龙马溪组富有机质页岩孔隙度分布图 Fig. 5 Porosity distribution of organic-rich shale from Longmaxi Formation in Southern Sichuan Basin
5 不同埋深页岩气储层孔径分布特征

定量表征页岩孔径具有多种方法,其中低场核磁共振技术具有无损、快速且制作简单的优点,且能够反映纳米-微米级的孔径特征,近年来有较多学者通过该方法研究了页岩储层的物性和孔隙结构特征,取得了相应的成果(龚小平等,2016Liu et al., 2018李志清等,2018Liu et al., 2019Ma et al., 2020)。饱和流体的页岩样横向弛豫时间(T2)与孔径为一一对应关系,常利用转换公式和转换系数,将T2时间谱转换成对应的孔径分布图,龙马溪组页岩转换系数C取为23 nm/ms。研究发现,页岩孔喉分布主要有具有“双峰”特征, 部分呈“三峰”特征,主要孔径分布在1~1000 nm,与前人结论相符(张烈辉等,2015龚小平等,2016)。长宁区块具有相近TOC含量(TOC>4%)、不同埋深的页岩样品孔径分布特征具有相似性,大孔径部分无显著差异(图 6a);威远区块同一小层、不同埋深的样品之间孔径分布曲线相接近,未出现埋深较浅者大孔径部分显著优于深埋样品的规律(图 6b)。从分布频率柱状图来看,同为龙一11小层的5个样品孔隙体积均主要由100 nm以下孔隙提供,相同孔径范围内孔隙体积占比相近,大于100 nm的孔隙体积比例均较少(图 6c)。通过场发射扫描电镜观察发现,深埋页岩样品有机质孔隙、粒间孔与粒内溶孔等与浅埋样均有发育,两者在孔隙类型方面无差异(图 7)。

图 6 不同埋深龙马溪组页岩孔径分布 Fig. 6 Shale pores diameter distribution of Longmaxi Formation at different depth
图 7 深埋条件下龙马溪组页岩孔隙扫描电镜照片 Fig. 7 SEM images of shale pores from Longmaxi Formation under deep burial conditions
6 影响页岩气储层孔隙发育的其他因素 6.1 有机质含量对页岩气储层孔隙度的影响

有机质是有机质孔隙发育的载体,有机质孔隙是页岩气储层主要的孔隙类型,因而有机质的发育对页岩孔隙的发育具有重要的影响作用(张梦琪等,2019刘伟新等,2020)。从两个埋藏深度段TOC与孔隙度相关性图来看,龙一11与龙一13小层相关性最好;龙一12与龙一14小层相关性相对较差(图 8)。3000 m以深孔隙度与TOC的关联性在龙一12-3小层要好于3000 m以浅部分;在龙一11反而低于3000 m以浅部分,此时龙一11整体有机质含量很高,基本在3%以上,部分达到5%~7%(图 9 a)。分析认为,当有机质含量较低时(TOC≤5%),高有机质含量对孔隙度的增加有建设性作用,而当有机质过高(TOC>5%)时,高有机质含量降低了页岩骨架支撑能力,孔隙遭受上覆地层的压实作用更为强烈。

图 8 不同深度龙马溪组页岩TOC与与孔隙度关系图 Fig. 8 Relationship between TOC and porosity of Longmaxi Formation with different depth
图 9 不同小层页岩TOC和孔隙度的关联性及TOC与沉积环境关系 Fig. 9 Correlation between TOC and porosity and the relationship between TOC and sedimentary environment of different unit shale

TOC含量受到诸多因素的控制,U/Th是表征沉积时期氧化还原条件的重要参数;Ti或TiO2含量指示陆源物质输入情况,含量越高陆源输入量越大,沉积受到陆源物质的影响就越大(江增光,2018竺成林,2019)。N213井TOC与U/Th变化存在一致性,与Ti元素含量变化趋势则相反,高TOC含量出现在埋深2570~2585 m、高U/Th、低Ti的环境中;孔隙度的发育与TOC、U/Th变化趋势一致,与Ti元素含量相反(图 9b)。由此表明高U/Th、低Ti是孔隙发育的物质基础。

6.2 脆性矿物对页岩气储层孔隙的影响

脆性矿物,尤其是硅质矿物,因其硬度大、抗压实作用较强,能够对深埋的页岩孔隙具有一定支撑保护作用(龙胜祥等,2018张梦琪等,2019徐中华等,2020),因此不同矿物组成、不同岩相页岩样品之间孔隙度将存在差异。统计分析3500 m以深样品矿物组成、岩相特征、孔隙度,以研究脆性矿物对页岩气储层孔隙的影响作用。硅质矿物(石英+长石)含量与孔隙度具有一定正相关关系,整体上随着含量增高,孔隙度有增高趋势(图 10a);总黏土矿物含量与孔隙度则具有相反的趋势,黏土含量越高,整体上孔隙度相对较低(图 10b)。依据矿物组成三端元法可将研究区页岩划分为多种岩相,其中主要岩相为硅质页岩和混合质页岩,混合质页岩含钙质硅质混合页岩、黏土质硅质混合页岩和黏土质钙质混合页岩三种岩相(王玉满等,2016)。从不同岩相对应孔隙度分布柱状图可明显看出硅质页岩对应孔隙度主峰值高于高黏土质的页岩对应孔隙度,分别为4%~5%、3%~4%(图 10c)。微观上看,在富石英的区域,不仅存在大量矿物粒间孔,同时这些孔隙还受到脆性矿物形成的刚性“骨架”的保护,从而得到保存(图 7 e)。

图 10 3500 m以深页岩矿物含量与孔隙度相关性(a,b)及不同岩相页岩孔隙度分布频率图(c) Fig. 10 Below 3500 m, the correlation between mineral content and porosity (a, b) and Porosity distribution frequency of different facies in shale(c)
6.3 压力系数对页岩气储层孔隙的影响

压力系数是表征地下流体能量大小以及封闭程度的一个综合参数指标(刘洪林等,2013),按照压力系数大小分为>1.2、1.0~1.2和 < 1.0的A、B、C三类,分别对应三类储层(陈斐然等,2020)。川南和渝东南地区龙马溪组页岩地层超压的存在,减缓了地层压实作用和成岩作用对页岩孔隙的影响,孔隙从而得到了“保护”(杨洪志等,2019马新华等,2020高玉巧等,2020)。利用已有数据及文献资料对不同埋深页岩储层压力系数与孔隙度大小进行统计整理(表 1),不同地区不同深度页岩TOC含量均较高,主体在3%~4%,地层埋深、压力系数及孔隙度差异较大。压力系数与埋深具有良好的正相关关系,R2为0.7398,表明压力系数随地层深度增大而增高(图 11 a)。不同深度段孔隙度与压力系数具有不同相关性,3000 m以浅部分,孔隙度随压力系数增加而增大,两者具有较好的正相关性,R2为0.3984 (图 11b)。3000~3500 m及3500 m以深部分,孔隙度与压力系数无明显相关性(图 11 cd),整体上压力系数在1.2~2.4,孔隙度为4%~6%。

表 1 不同埋深下压力系数与孔隙度统计表 Table 1 Statistical table of pressure coefficient and porosity at different depths
图 11 压力系数与埋深关系(a)、不同深度段孔隙度与压力系数相关性(b, c, d) Fig. 11 Relation between pressure coefficient and buried depth(a), correlation between porosity and pressure coefficient at different depths(b, c, d)

分析认为,埋深较浅(≤3000 m)时,压力系数对孔隙的影响作用更为明显,在此范围内,压力系数的增高,孔隙受到高压的保护作用逐渐增强,孔隙度因此呈现增大的趋势;当压力系数随着埋深进一步增大而增大(3000~3500 m及≥3500 m),压力系数普遍较高,但同时上覆地层压力作用也极为强烈,此时孔隙度受到高压力系数的“保护”作用相对有限,因此压力系数与孔隙度相关性不明显。

深埋条件下一般具备高地层压力系数特征(图 11a),不同地层压力系数对应孔喉特征与不同埋深下孔喉特征具有一致性(图 6),孔喉分布呈现“双峰”或“三峰”特征,孔径主体均在100 nm以下,不同压力系数下页岩孔喉分布差异并不显著。

7 结论

(1) 川南地区不同埋深页岩气井龙一1亚段孔隙度存在差异。2500 m、3500 m及4000 m三个深度级别的典型井龙一1亚段孔隙度纵向上随埋深变化不明显,与TOC呈正相关性。三口典型井对比发现埋深最浅井孔隙度最高,埋深最大孔隙度最低。17口井孔隙度数据统计显示孔隙度随埋深大幅度增加,呈现逐渐降低的趋势,孔隙度主要分布区间从4%~8%降低到3%~6%。

(2) 页岩孔喉分布呈“双峰”和“三峰”形态,以“双峰”为主,主要孔径分布在1~1000 nm。埋深不影响页岩孔隙类型的发育,不同深度页岩有相同的孔隙类型;埋深对孔隙体积比例无显著影响,不同埋深页岩孔隙体积均以100 nm以下孔隙为主,大孔隙体积仅占少部分。

(3) TOC是控制页岩孔隙发育的关键因素,适中的有机质含量利于孔隙发育,TOC过高会导致页岩骨架支撑能力降低,上覆地层压实作用增强。高脆性矿物和高压力系数的存在,使得页岩抵抗压实作用的能力增强,在深埋条件下页岩孔隙仍然得到了较好的保存;但当地层埋深达到一定程度时,脆性矿物和压力系数对孔隙的“保护”作用降低,页岩孔隙度仍会降低。

参考文献
Chen Feiran, Duan Jinbao, Zhang Hanrong, Wei Xiangfeng, Liu Zhujiang, Wang Qiang, Yu Guangchun. 2020. Shale gas resource evaluation based on "pressure coefficient": A case study of Upper Ordovician Wufen-Lower Silurian Longmaxi Formations in southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 42(3): 405-414 (in Chinese with English abstract).
Dong Dazhong, Zou Caineng, Yang Hua, Wang Yuman, Li Xinjing, Chen Gengsheng, Wang Shiqian, Lü Zonggang, Huang Yongbin. 2012. Progress and prospects of shale gas exploration and development in China[J]. Acta Petrolei Sinica, 33(1): 107-114.
Dong Dazhong, Zou Caicai, Dai Jinxin, Huang Shipeng, Zheng Junwei, Gong Jianming, Wang Yuman, Li Xinjing, Guan Quanzhong, Zhang Chenchen, Huang Jinliang, Wang Shufang, Liu Dexun, Qiu Zhen. 2016. Suggestions on the development strategy of shale gas in China[J]. Natural Gas Geoscience, 27(3): 397-406 (in Chinese with English abstract).
Gao Yuqiao, Cai Xiao, He Xipeng, Wu Yanyan, Ding Anxu, Gao Hequn, Zhang Peixian. 2020. Relationship between shale pressure system and organic pore development of Wufeng-Longmaxi Formation in marginnal conversion zone of southeastern Chongqing Basin[J]. Journal of Jilin University(Earth Science Edition), 50(2): 662-674 (in Chinese with English abstract).
Gong Xiaoping, Tang Hongming, Zhao Feng, Wang Junjie, Xiong Hao. 2016. Quantitative characterization of pore structure in shale reservoir of Longmaxi Formation in Sichuan Basin[J]. Lithologic Reservoirs, 28(3): 48-57 (in Chinese with English abstract).
Guo Xiuying, Chen Yicai, Zhang Jian, Man Ling, Zhang Haiqiao, Tong Xiaojun, Ren Dongchao. 2015. Assessment index selection and weight determination of shale gas plays: A case study of marine shale in the Sichuan Basin[J]. Natural Gas Industry, 35(10): 57-64 (in Chinese with English abstract).
Guo Yinghai, Li Zhuangfu, Li Dahua, Zhang Tianmo, Wang Zecheng, Yu Jifeng, Xi Yantao. 2004. Lithofacies palaeogeography of the Early Silurian in Sichuan area[J]. Journal of Palaeogeography, 1: 20-29 (in Chinese with English abstract).
Lu Hao, Zhao Ankun, Tang Hongming, Lu Lizhe, Jiang Liping. 2020. Pore characterization and its controlling factors in the Wufeng-Longmaxi shale of North Guizhou, Southwest China[J]. Energy & Fuels, 34(12): 15763-15772.
He Zhiliang, Nie Haikuan, Hu Dongfeng, Jiang Tingxue, Wang Ruyue, Zhang Yuying, Zhang Guang, Lu Zhiyuan. 2020. Geological problems in the effective development of deep shale gas: A case study of Upper Ordovician Wufeng-Lower Silurian Longmaxi formation in Sichuan Basin and its periphery[J]. Acta PetroleiSinica, 41(4): 379-391 (in Chinese with English abstract).
Jiang Zengguang. 2018. The Main Controlling Factors and Depotional Model of Organic Matter Accumulation in the Wufeng-Longmaxi formations in the Sichuan Basin[D]. Donghua University of Technology (in Chinese with English abstract).
Jiao Fangzheng. 2019. Theoretical insights, core technologies and practices concerning 'volume development'of shale gas in China[J]. Natural Gas Industry, 39(5): 1-14 (in Chinese with English abstract).
Li Zhiqing, Sun Yang, Hu Ruilin, Zhao Ying, Peng Yu. 2018. Quantitative analysis for nanopore structure characteristics of shale using NMR and NMR cryoporometry[J]. Journal of Engineering Geology, 26(3): 758-766 (in Chinese with English abstract).
Liao Dongliang, Lu Baoping, Chen Yanjun. 2019. An evaluation method of geological sweet spots of shale gas reservoir: A case study of she Jiaoshiba gas field, Sichuan Basin[J]. Acta PetroleiSinica, 40(2): 144-151 (in Chinese with English abstract).
Liu Honglin, Wang Hongyan. 2013. Ultra-low water saturation characteristics and the identification of over-pressured play fairways of marine shales in south China[J]. Natural Gas Industry, 33(7): 140-144 (in Chinese with English abstract).
Liu Ruobing. 2015. Typical features of the first giant shale gas field in China[J]. Natural Gas Geoscience, 26(8): 1488-1498 (in Chinese with English abstract).
Liu Yong, Yao Yanbin, Liu Dameng, Zheng Sijian, Sun Guangxuan, Chang Yanhai. 2018. Shale pore size classification: An NMR fluid typing method[J]. Marine and Petroleum Geology, 96: 591-601. DOI:10.1016/j.marpetgeo.2018.05.014
Liu Weixin, Lu Longfei, Wei Zhihong, Yu Lingjie, Zhang Wentao, Xu Chenjie, Ye Deyue, Shen Jian, Fan Ming. 2020. Microstructure characteristics of Wufeng-Longmaxi shale gas reservoirs with different depth, southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 42(3): 378-386 (in Chinese with English abstract).
Liu Zhengshuai, Liu Dameng, Yidong Cai, Yao Yanbin, Pan Zhejun, Zhou Yingfang. 2019. Application of nuclear magnetic resonance (NMR) in coalbed methane and shale reservoirs: A review[J]. International Journal of Coal Geology, 218: 103261.
Long Shengxiang, Cao Yan, Zhu Jie, Zhu Tong, Wang Feng. 2016. A preliminary study on prospects for shale gas industry in China and relevant issues[J]. Petroleum and Natural Gas Geology, 37(6): 847-853 (in Chinese with English abstract).
Long Shengxiang, Feng dongJun, Li Fengxia, Du Wei. 2018. Prospect of the deep marine shale gas exploration and developmentin the Sichuan Basin[J]. Natural Gas Geoscience, 29(4): 443-451 (in Chinese with English abstract).
Ma Xinhua, Xie Jun. 2018. The progress and prospects of shale gas exploration and exploitation in southern Sichuan Basin, NW China[J]. Petroleum Exploration and Development, 45(1): 161-169 (in Chinese with English abstract).
Ma Xinhua, Wang Hongyan, Zhou Shangwen, Feng Ziqi, Liu Honglin, Guo Wei. 2020. Insights into NMR response characteristics of shales and its application in shale gas reservoir evaluation[J]. Journal of Natural Gas Science and Engineering, 84: 103674. DOI:10.1016/j.jngse.2020.103674
Ma Xinhua, Xie Jun, Yong Rui. 2020. Geological characteristics and high production control factors of shale gas in Silurian Longmaxi Formation, southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 47(5): 1-15 (in Chinese with English abstract).
Mou Chuanlong, Zhou Ken, Liang Wei, Ge Xiangying. 2011. Early Paleozoic sedimentary environment of hydrocarbon source rocks in the Middle-Upper Yangtze Region and petroleum and gas exploration[J]. Acta Geologica Sinica, 85(4): 526-532 (in Chinese with English abstract).
Nie Haikuan, Jin Zhijun, Ma Xin, Liu Zhongbao, Lin Tuo, Yang Zhenheng. 2017. Graptolites zone and sedimentary characteristics of Upper Ordovician Wufeng Formation Lower Silurian Longmaxi Formation in Sichuan Basin and its adjacent areas[J]. Acta Petrolei Sinica, 38(2): 160-174 (in Chinese with English abstract).
Wang Huan, Ma Bing, Jia Lingxiao, Yu Yang, Hu Jiaxiu, Wang Wei. 2021. The role, supply and demand of critical minerals in the clean energy transition under carbon neutrality targets and their recommendations[J]. Geology in China, 48(6): 1720-1733 (in Chinese with English abstract).
Wang Jian, Cao Yingchang, Gao Yongjin, Liu Huimin, Liu Xiaoli, Tang Dong. 2011. Petrophysical parameter cutoff and controlling factors of effective reservoir of red beds sandbodies of Paleogene in Dongying depression[J]. Journal of China University of Petroleum(Edition of Natural Science), 35(4): 27-33 (in Chinese with English abstract).
Wang Shiqian. 2017. Shale gas exploitation: Status, issues and prospects[J]. Natural Gas Industry, 37(6): 115-130 (in Chinese with English abstract).
Wang Tong, Yang Keming, Xiong Liang, Shi Hongliang, Zhang Quanlin, Wei Limin, He Xianli. 2015. Shale sequence stratigraphy of Wufeng-Longmaxi Formation in southern Sichuan and their control on reservoirs[J]. Acta Petrolei Sinica, 36(8): 915-925 (in Chinese with English abstract).
Wang Yuman, Dong Dazhong, Li Xinjing, Huang Liang, Wang ShuFang, Wu Wei. 2015. Stratigraphic sequence and sedimentary characteristic of Lower Silurian Longmaxi Formation in the Sichuan Basin and its peripheral areas[J]. Natural Gas Industry, 35(3): 12-21 (in Chinese with English abstract).
Wang Yuman, Wang Shufang, Dong Dazhong, Li Xinjing, Huang Jinliang, Zhang Chenchen, Guan Quanzhong. 2016. Lithofacies characterization of Longmaxi Formation of the Lower Silurian, Southern Sichuan[J]. Earth Science Frontiers, 23(1): 119-133 (in Chinese with English abstract).
Xu Zhonghua, Zheng Majia, Liu Zhonghua, Deng Jixin, Li Xizhe, Guo Wei, Li Jing, Wang Nan, Zhang Xiaowei, Guo Xiaolong. 2020. Petrophysical properties of deep Longmaxi Formation shales in the southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 47(6): 1-11 (in Chinese with English abstract).
Yang Hongzhi, Zhao Shengxian, Liu Yong, Wu Wei, Xia Ziqiang, Wu Tianpeng, Luo Chao, Fan Tianyou, Yu Linyao. 2019. Main controlling factors of enrichment and high-yield of deep shale gas in the Luzhou Block, southern Sichuan Basin[J]. Natural Gas Industry, 39(11): 55-63 (in Chinese with English abstract).
Zhai Gangyi, Wang Yufang, Zhou Zhi, Yu Shufang, Chen Xianglin, Zhang Yunxiao. 2018. Exploration and research progress of shale gas in China[J]. China Geology, 1: 257-272. DOI:10.31035/cg2018024
Zhang Liehui, Guo Jingjing, Tang Hongming, Liu Jia, Li Qirong, He Jiyang. 2015. Pore structure characterics of Longmaxi shale in the southern Sichuan Basin[J]. Natural Gas Industry, 35(3): 22-29 (in Chinese with English abstract).
Zhang Mengqi, Zou Caineng, Guan Ping, Dong Dazhong, Sun Sasa, Shi Zhensheng, Li Zhixin, Feng Ziqi, Li Lamaocaidan. 2019. Pore-throat characteristics of deep shale gas reservoirs in south of Sichuan Basin: Case study of Longmaxi Formation in Well Z201 of Zigong area[J]. Natural Gas Geoscience, 30(9): 1349-1361 (in Chinese with English abstract).
Zhang Pengfei, Lu Shuangfang, Li Wenhao, Hu Ying, Xue Haitao, Li Qian, Zhang Han. 2016. Lower limits of porosity and permeability of shale oil reservoirs in the Xingouzui Formation, Jianghan Basin[J]. Lithologic Reservoirs, 28(3): 48-57 (in Chinese with English abstract).
Zhao Shengxian, Yang Yueming, Zhang Jian, Wang Lansheng, Wang Xingzhi, Luo Chao, Tian Chong. 2016. Micro-layers division and fine reservoirs contrast of Lower Silurian Longmaxi Formation shale, Sichuan Basin, SW China[J]. Natural Gas Geoscience, 27(3): 470-487 (in Chinese with English abstract).
Zhao Wenzhi, Jia Ailin, Wei Yunsheng, Wang Junlei, Zhu Hanqing. 2020. Progress in shale gas exploration in China and prospects for future development[J]. China Petroleum Exploration, 25(1): 31-44 (in Chinese with English abstract).
Zheng Herong, Gao Bo, Peng Yongmin, Nie Haikuan, Yang Feiran. 2013. Sedimentary evolution and shale gas exploration direction of the Lower Silurian in Middle-Upper Yangtze area[J]. Journal of Palaeogeography, 15(5): 645-656 (in Chinese with English abstract).
Zhou Liming. 2016. Kinetic Mechanism and Application on the Lower Limit of Effective Reservoir Physical Properties of Tight Oil[D]. Beijing: China University of Petroleum (Beijing) (in Chinese with English abstract).
Zhu Chenglin. 2019. Enrichment mechanism of organic matter and depositional environment of Longmaxi Black Shale in Southern Formation of Sichuan Basin[D]. Guiyang: Guizhou University (in Chinese with English abstract).
Zou Caineng, Dong Dazhong, Wang Yuman, Li Xinjing, Huang Jinliang, Wang Shufang, Guan Quanzhong, Zhang Chenchen, Wang Hongyan, Liu Honglin, BaiWenhua, Liang Feng, Lin Wen, Zhao Qun, Liu Dexun, Yang Zhi, Liang Pingping, Sun Shasha, Qiu Zhen. 2016. Shale gas in China: Characteristics, challenges and prospects(II)[J]. Petroleum Exploration and Development, 43(2): 166-178 (in Chinese with English abstract).
陈斐然, 段金宝, 张汉荣, 魏祥峰, 刘珠江, 王强, 余光春. 2020. 页岩气"压力系数"分级资源评价方法——以川东南上奥陶统五峰组—下志留统龙马溪组为例[J]. 石油实验地质, 42(3): 405-414.
董大忠, 邹才能, 杨桦, 王玉满, 李新景, 陈更生, 王世谦, 吕宗刚, 黄勇斌. 2012. 中国页岩气勘探开发进展与发展前景[J]. 石油学报, 33(1): 107-114. DOI:10.3969/j.issn.1001-8719.2012.01.019
董大忠, 邹才能, 戴金星, 黄士鹏, 郑军卫, 龚剑明, 王玉满, 李新景, 管全中, 张晨晨, 黄金亮, 王淑芳, 刘德勋, 邱振. 2016. 中国页岩气发展战略对策建议[J]. 天然气地球科学, 27(3): 397-406.
高玉巧, 蔡潇, 何希鹏, 吴艳艳, 丁安徐, 高和群, 张培先. 2020. 渝东南盆缘转换带五峰组—龙马溪组页岩压力体系与有机孔发育关系[J]. 吉林大学学报(地球科学版), 50(2): 662-674.
龚小平, 唐洪明, 赵峰, 王俊杰, 熊浩. 2016. 四川盆地龙马溪组页岩储层孔隙结构的定量表征[J]. 岩性油气藏, 28(3): 48-57. DOI:10.3969/j.issn.1673-8926.2016.03.008
郭秀英, 陈义才, 张鉴, 满玲, 郑海桥, 童小俊, 任东超. 2015. 页岩气选区评价指标筛选及其权重确定方法——以四川盆地海相页岩为例[J]. 天然气工业, 35(10): 57-64. DOI:10.3787/j.issn.1000-0976.2015.10.007
郭英海, 李壮福, 李大华, 张天模, 汪泽成, 余继峰, 奚砚涛. 2004. 四川地区早志留世岩相古地理[J]. 古地理学报, 1: 20-29.
何治亮, 聂海宽, 胡东风, 蒋廷学, 王濡岳, 张钰莹, 张光荣, 卢志远. 2020. 深层页岩气有效开发中的地质问题——以四川盆地及其周缘五峰组—龙马溪组为例[J]. 石油学报, 41(4): 379-391.
江增光. 2018. 四川盆地五峰组—龙马溪组有机质富集主控因素及沉积模式[D]. 东华理工大学.
焦方正. 2019. 页岩气"体积开发"理论认识、核心技术与实践[J]. 天然气工业, 39(5): 1-14.
李志清, 孙洋, 胡瑞林, 赵颖, 彭宇. 2018. 基于核磁共振法的页岩纳米孔隙结构特征研究[J]. 工程地质学报, 26(3): 758-766.
廖东良, 路保平, 陈延军. 2019. 页岩气地质甜点评价方法——以四川盆地焦石坝页岩气田为例[J]. 石油学报, 40(2): 144-151.
刘洪林, 王红岩. 2013. 中国南方海相页岩超低含水饱和度特征及超压核心区选择指标[J]. 天然气工业, 33(7): 140-144.
刘若冰. 2015. 中国首个大型页岩气田典型特征[J]. 天然气地球科学, 26(8): 1488-1498.
刘伟新, 卢龙飞, 魏志红, 俞凌杰, 张文涛, 徐陈杰, 叶德燎, 申宝剑, 范明. 2020. 川东南地区不同埋深五峰组—龙马溪组页岩储层微观结构特征与对比[J]. 石油实验地质, 42(3): 378-386.
龙胜祥, 曹艳, 朱杰, 朱彤, 王烽. 2016. 中国页岩气发展前景及相关问题初探[J]. 石油与天然气地质, 37(6): 847-853.
龙胜祥, 冯动军, 李凤霞, 杜伟. 2018. 四川盆地南部深层海相页岩气勘探开发前景[J]. 天然气地球科学, 29(4): 443-451.
马新华, 谢军. 2018. 川南地区页岩气勘探开发进展及发展前景[J]. 石油勘探与开发, 45(1): 161-169.
马新华, 谢军, 雍锐. 2020. 四川盆地南部龙马溪组页岩气地质特征及高产控制因素[J]. 石油勘探与开发, 47(5): 1-15.
牟传龙, 周恳恳, 梁薇, 葛祥英. 2011. 中上扬子地区早古生代烃源岩沉积环境与油气勘探[J]. 地质学报, 85(4): 526-532.
聂海宽, 金之钧, 马鑫, 刘忠宝, 林拓, 杨振恒. 2017. 四川盆地及邻区上奥陶统五峰组—下志留统龙马溪组底部笔石带及沉积特征[J]. 石油学报, 38(2): 160-174.
王欢, 马冰, 贾凌霄, 于洋, 胡嘉修, 王为. 2021. 碳中和目标下关键矿产在清洁能源转型中的作用、供需分析及其建议[J]. 中国地质, 48(6): 1720-1733.
王健, 操应长, 高永进, 刘惠民, 刘晓丽, 唐东. 2011. 东营凹陷古近系红层砂体有效储层的物性下限及控制因素[J]. 中国石油大学学报(自然科学版), 35(4): 27-33. DOI:10.3969/j.issn.1673-5005.2011.04.005
王世谦. 2017. 页岩气资源开采现状、问题与前景[J]. 天然气工业, 37(6): 115-130.
王同, 杨克明, 熊亮, 史洪亮, 张全林, 魏力民, 何显莉. 2015. 川南地区五峰组—龙马溪组页岩层序地层及其对储层的控制[J]. 石油学报, 36(8): 915-925.
王玉满, 董大忠, 李新景, 黄金亮, 王淑芳, 吴伟. 2015. 四川盆地及其周缘下志留统龙马溪组层序与沉积特征[J]. 天然气工业, 35(3): 12-21. DOI:10.3787/j.issn.1000-0976.2015.03.002
王玉满, 王淑芳, 董大忠, 李新景, 黄金亮, 张晨晨, 管全中. 2016. 川南下志留统龙马溪组页岩岩相表征[J]. 地学前缘, 23(1): 119-133.
徐中华, 郑马嘉, 刘忠华, 邓继新, 李熙喆, 郭伟, 李晶, 王楠, 张晓伟, 郭晓龙. 2020. 川南地区龙马溪组深层页岩岩石物理特征[J]. 石油勘探与开发, 47(6): 1-11.
杨洪志, 赵圣贤, 刘勇, 吴伟, 夏自强, 吴天鹏, 罗超, 凡田友, 余林瑶. 2019. 泸州区块深层页岩气富集高产主控因素[J]. 天然气工业, 39(11): 55-63.
张烈辉, 郭晶晶, 唐洪明, 刘佳, 李其荣, 何激扬. 2015. 四川盆地南部下志留统龙马溪组页岩孔隙结构特征[J]. 天然气工业, 35(3): 22-29.
张梦琪, 邹才能, 关平, 董大忠, 孙莎莎, 施振生, 李志欣, 冯子齐, 李拉毛才旦. 2019. 四川盆地深层页岩储层孔喉特征——以自贡地区自201井龙马溪组为例[J]. 天然气地球科学, 30(9): 1349-1361.
张鹏飞, 卢双舫, 李文浩, 胡莹, 薛海涛, 李倩, 张晗. 2016. 江汉盆地新沟嘴组页岩油储层物性下限[J]. 石油与天然气地质, 37(1): 93-100.
赵圣贤, 杨跃明, 张鉴, 王兰生, 王兴志, 罗超, 田冲. 2016. 四川盆地下志留统龙马溪组页岩小层划分与储层精细对比[J]. 天然气地球科学, 27(3): 470-487.
赵文智, 贾爱林, 位云生, 王军磊, 朱汉卿. 2020. 中国页岩气勘探开发进展及发展展望[J]. 中国石油勘探, 25(1): 31-44.
郑和荣, 高波, 彭勇民, 聂海宽, 杨斐然. 2013. 中上扬子地区下志留统沉积演化与页岩气勘探方向[J]. 古地理学报, 15(5): 645-656.
周立明. 2016. 致密油藏有效储层物性下限及其形成的动力学机制与应用[D]. 北京: 中国石油大学(北京).
竺成林. 2019. 川南地区龙马溪组黑色页岩发育环境与有机质富集机制[D]. 贵阳: 贵州大学.
邹才能, 董大忠, 王玉满, 李新景, 黄金亮, 王淑芳, 管全中, 张晨晨, 王红岩, 刘洪林, 拜文华, 梁峰, 吝文, 赵群, 刘德勋, 杨智, 梁萍萍, 孙莎莎, 邱振. 2016. 中国页岩气特征、挑战及前景(二)[J]. 石油勘探与开发, 43(2): 166-178.