• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

西藏朗县地区增生楔杂岩带90 Ma岛弧型深成岩浆活动和意义

李奋其, 李益多, 张士贞, 李勇

李奋其, 李益多, 张士贞, 李勇. 西藏朗县地区增生楔杂岩带90 Ma岛弧型深成岩浆活动和意义[J]. 中国地质, 2016, 43(1): 142-152.
引用本文: 李奋其, 李益多, 张士贞, 李勇. 西藏朗县地区增生楔杂岩带90 Ma岛弧型深成岩浆活动和意义[J]. 中国地质, 2016, 43(1): 142-152.
LI Fen-qi, LI Yi-duo, ZHANG Shi-zheng, LI Yong. The 90 Ma island-arc type plutonism in the subduction-accretionary complex in Langxian County area, Tibet[J]. GEOLOGY IN CHINA, 2016, 43(1): 142-152.
Citation: LI Fen-qi, LI Yi-duo, ZHANG Shi-zheng, LI Yong. The 90 Ma island-arc type plutonism in the subduction-accretionary complex in Langxian County area, Tibet[J]. GEOLOGY IN CHINA, 2016, 43(1): 142-152.

西藏朗县地区增生楔杂岩带90 Ma岛弧型深成岩浆活动和意义

基金项目: 

中国地质调查局国土资源大调查项目(12120113034700)和国家自然科学基金项目(41272091)资助。

详细信息
    作者简介:

    李奋其,男,1966年生,博士,教授级高级工程师,长期从事冈底斯成矿带基础地质研究;E-mail:lifenqi2012@163.com。

  • 中图分类号: P597.3;P588.12+2

The 90 Ma island-arc type plutonism in the subduction-accretionary complex in Langxian County area, Tibet

Funds: 

Supported by China Geological Surrey Program (No. 121201130347001), National Natural Science Foundation of China (No. 41272091).

  • 摘要: 碰撞前增生楔带的岩浆活动在世界许多缝合带均较强烈。为证实雅鲁藏布江带是否存在碰撞前增生楔岩浆活动,本文报道了朗县英云闪长岩岩株的地质特征,以及岩石学、锆石U-Pb定年、全岩地球化学和Sr-Nd同位素数据。结果表明,朗县岩体变形较弱,侵位于强烈变形的蛇绿混杂岩中(蛇绿岩年龄(145.7±2.5)Ma),时代为(92.58±0.72) Ma(MSWD=1.8),岩石属于钙碱性系列,高镁、富钠,相容元素(Cr=71.48×10-6~86.74×10-6,Co=22.32×10-6~23.52×10-6,Ni=33.51×10-6~36.31×10-6)含量高,富含大离子亲石元素Rb、Ba和放射性生热元素Th、Pb、U、K、Sr等,明显亏损Nb、Ta、Zr、Hf(Ti)等非活动性元素,轻稀土明显富集,重稀土亏损(LaN/YbN=6.95~7.44),具有不明显的铕异常,δ Eu值为0.82~0.91,εNd(t)值变化于2.68~3.23。在以上基础上,结合前人研究成果,认为朗县英云闪长岩体形成于增生楔岛弧环境,与雅鲁藏布江洋俯冲-消减带向南迁移密切相关,是90 Ma的洋脊俯冲地球动力背景下亏损地幔和增生楔熔体混合的产物。
    Abstract: The pre-collision magmatism took place in the accretionary wedges of many orogens. This paper presents the geological features of Langxian tonalite stock, zircon U-Pb data, and geochemical and Sr-Nd isotopic data for the tonalite to discuss whether island-arc type magmatism took place in the accretionary wedges of Yarlung Zangbo belt. The results indicate that the deformation degree of stock is distinctively lower than that of its wall rocks which comprises ophiolite mélange (145.7±2.5 Ma), and the age of the stock is (92.58±0.72)Ma (MSWD=1.8). The diorite is characterized by calc-alkaline series, and high Mg, Na, abundances of compatible elements (Cr=71.48×10-6-86.74×10-6, Co=22.32×10-6-23.52×10-6, Ni=33.51×10-6-36.31×10-6). The rock is enriched in Rb, Ba, Th, Pb, U, K, and depleted in Nb, Ta, Zr, Hf(Ti). REE patterns show strong enrichment of LREE and depletion of HREE (LaN/YbN=6.95-7.44), with indistinct Eu anomaly (δEu=0.82-0.91). Meanwhile, the values of εNd(t) vary from 2.68 to 3.23. Based on these results in combination with previous data, the authors suggest that Langxian diotite intrusion was formed in an accretionary wedge island arc setting, related to southward migration of the Yarlung Zangbo subduction, and derived from the magma mixture of depleted mantle and subduction accretionary complex in the ocean ridge subducting at 90 Ma or so.
  • 图  1   研究区地质简图(据 1:25万林芝县幅、隆子县幅地质图编制,略有改动)

    1—第四系; 2—渐新世磨拉石建造; 3—晚三叠世复理石建造; 4—蛇绿混杂岩带; 5—朗县岩体; 6—橄榄岩岩片/玄武岩岩片; 7—二叠纪灰岩构造岩块; 8—英云闪长岩; 9—片理化带; 10—公路/雅鲁藏布江; 11—采样位置

    Figure  1.   Simplified geological map of the study area

    1-Quaternary; 2-Oligocene molasse; 3-Late Triassic flysch; 4-ophiolite melange belt; 5-Langxian intrusion; 6- Tectonic slice of peridotite/basalt; 7-Tectonic block of Permian limestone; 8-Tonalite; 9-Schistosity zone; 10-Road/ Yarlung Zangbo River; 11-Sampling location

    图  2   朗县岩体闪长岩的显微照片(正交偏光)

    Q—石英;Kf—钾长石;Pl—斜长石;Bi—黑云母;Hb—角闪石

    Figure  2.   Microphotograph of diorite in Langxian intrusion (crossed nicols)

    Q-Quartz; Kf-K-feldspar,Pl-Plagioclase; Bi-Biotite; Hb-Hornb lende

    图  3   朗县闪长岩阴极发光图像(a)和锆石U-Pb谐和图(b)

    Figure  3.   Cathodoluminescence (CL) images of zircons (a) andU-Pb age concordia plots (b) for Langxian diorite

    图  4   朗县岩体An-Ab-Or图解(A)和 SiO2-K2O图解(B)

    (图 a据文献[24],图 b据文献[25])

    Figure  4.   SiO2-(Na2O+K2O) (A) and SiO2- K2O (B) diagram for Langxian intrusion

    图  5   朗县英云闪长岩株微量元素原始地幔标准化蜘蛛网图(A)和稀土元素球粒陨石标准化配分曲线图(B)

    原始地幔标准化数据、球粒陨石标准化数据(标准化数值据文献[28])

    Figure  5.   Primitive mantle normalized race elements spider diagram (A) and chondrite-normalized REE patterns (B) of Langxian tonalite stock (normalized data after reference [28])

    图  6   朗县岩体的构造环境判别图解

    (a)—Hf/3-Th-Ta图解(底图据文献[33]):A-N型 MORB,B-E型 MORB和板内拉斑玄武岩,C-板内碱性玄武岩,D-岛弧玄武岩;(b)—Zr-Zr/Y图解(底图据文献[34]);(c)—Sc/Ni-La/Yb图解;(d)—Th-La/Yb图解;(e)—Th/Yb-La/Yb图解(底图 c、d和 e据文献[35])

    Figure  6.   Tectonic discrimination diagram for Langxian intrusion

    (a)-Diagram of Hf/3-Th-Ta (base map after reference [33]): A-N-MORB,B-E-MORB and tholeiite intraplate basalts,C-Alkali intraplate basalt,D-Island arc basalt; (b)—Diagram of Zr-Zr/Y (base map after reference [34]); (c)-Diagram of Sc/Ni-La/Yb;(d)-Diagram of Th-La/Yb; (e)-Diagram of Th/Yb-La/Yb (base map c,d,e,after reference [35])

    图  7   朗县英云闪长岩的(87Sr/84Sr)i-εNd(t)图解

    Figure  7.   Plot of εNd(t) versus (87Sr/84Sr)i for Langxian tonalite apophysis

    表  1   朗县英云闪长岩锆石U-Pb同位素分析结果

    Table  1   Analytical results of zirconU-Pb isotopes from Langxian tonalite stock

    测点 含量/10-6 同位素比值 表面年龄/Ma
    Pb Th U 207pb/206pb 207Pb/235U 206pb/238U 207pb/206pb 207Pb/235U 206pb/238U
    L1-1 33.9 628 641 0.0474 0.0022 0.0950 0.0044 0.0146 0.0001 77.9 98.1 92.1 4.1 93.5 0.9
    L1-2 29.1 565 557 0.0498 0.0021 0.0965 0.0042 0.0143 0.0002 183 98 93.5 3.8 91.2 1.1
    L1-3 107 1805 2670 0.0561 0.0014 0.1046 0.0029 0.0135 0.0001 454 56 101 3 86.4 0.5
    L1-4 98 1490 2981 0.0466 0.0008 0.0934 0.0017 0.0145 0.0001 31.6 40.7 90.7 1.6 93.1 0.7
    L1-5 49.7 879 1065 0.0488 0.0015 0.0966 0.0029 0.0144 0.0001 139 72 93.6 2.7 92.2 0.8
    L1-6 14.6 256 357 0.0539 0.0027 0.1045 0.0051 0.0143 0.0002 369 113 101 5 91.3 1.3
    L1-7 29.3 533 545 0.0483 0.0018 0.0950 0.0037 0.0143 0.0002 122 89 92.2 3.4 91.8 1.1
    L1-8 24.3 395 643 0.0469 0.0020 0.0939 0.0040 0.0147 0.0002 55.7 87.0 91.1 3.7 93.9 1.1
    L1-9 30.6 558 579 0.0477 0.0023 0.0956 0.0047 0.0146 0.0002 83.4 111.1 92.7 4.3 93.4 1.1
    L1-10 31.4 497 778 0.0462 0.0017 0.0948 0.0038 0.0148 0.0002 5.66 88.9 91.9 3.5 94.9 1.0
    L1-11 30.4 557 567 0.0497 0.0023 0.0980 0.0045 0.0144 0.0002 183 107 94.9 4.1 92.1 1.0
    L1-12 33.2 539 804 0.0468 0.0019 0.0928 0.0036 0.0145 0.0002 39.0 92.6 90.1 3.4 92.9 1.0
    L1-13 24.9 407 609 0.0469 0.0022 0.0941 0.0043 0.0147 0.0002 55.7 98.1 91.4 4.0 94.0 1.1
    L1-14 43.8 784 902 0.0469 0.0017 0.1008 0.0039 0.0156 0.0002 42.7 85.2 97.5 3.6 99.6 1.0
    L1-15 26.9 495 541 0.0516 0.0019 0.1010 0.0039 0.0143 0.0001 333 85 97.7 3.6 91.3 0.9
    L1-16 19.0 275 364 0.0499 0.0028 0.1116 0.0058 0.0165 0.0002 191 132 107 5 105 1
    L1-17 28.3 542 557 0.0484 0.0024 0.0927 0.0045 0.0140 0.0001 120 115 90.0 4.1 89.9 0.9
    L1-18 24.9 480 529 0.0508 0.0020 0.0995 0.0040 0.0144 0.0002 232 62 96.3 3.7 92.1 1.1
    下载: 导出CSV

    表  2   朗县岩体主量元素(%)、微量元素(10-6)分析数据

    Table  2   Major and trace elements analyses for Langxian apophysis

    样品号 LX01 LX02 LX03 LX04 LL09 LL10
    SiO2 55.79 55.35 55.19 55.23 56.88 56.39
    Al2O3 16.96 17.16 17.23 17.11 16.59 16.88
    Fe2O3 2.61 3.39 3.4 3.51 4.68 4.63
    FeO 5.38 4.9 4.86 4.68 3.42 3.8
    CaO 6.98 7.04 7.22 7.14 6.74 6.76
    MgO 4.17 4.16 4.29 4.15 3.92 3.77
    k2O 2.22 2.11 1.78 2.18 1.98 1.97
    Na2O 3.64 3.71 3.71 3.82 3.54 3.46
    TiO2 0.98 1.02 0.99 1.03 0.92 1
    P2O5 0.29 0.3 0.3 0.31 0.27 0.31
    MnO 0.13 0.14 0.14 0.14 0.14 0.14
    灼失 0.14 0.082 0.26 0.13 0.48 0.36
    total 99.29 99.36 99.37 99.43 99.56 99.47
    Li 11.58 12.64 10.59 12.48 16.7 13.0
    Be 1.12 1.07 1.09 1.13 1.21 1.25
    Sc 22.32 22.49 22.43 23.52 20.6 21.2
    V 208.2 193.0 211.2 204.9 195 198
    Cr 74.26 71.48 78.33 84.16 44.7 28.0
    Co 26.46 26.10 27.06 29.49 25.7 27.0
    Ni 33.51 32.55 36.31 35.58 31.8 24.5
    Cu 91.43 104.2 95.14 101.5 76.0 82.6
    Zn 88.39 90.84 90.04 89.49 87.4 88.9
    Ga 19.15 19.05 19.21 19.19 19.1 19.5
    Rb 63.91 48.72 41.30 62.54 69.0 59.3
    Sr 534.2 545.6 555.9 540.8 465 506
    Zr 60.23 48.41 56.52 58.69 68.8 61.1
    Nb 5.71 5.57 5.63 5.46 5.75 6.23
    Sn 1.08 1.03 0.98 1.03 1.20 1.33
    Cs 2.67 1.97 1.91 2.34 7.02 2.57
    Ba 396.0 430.9 372.5 402.7 316 352
    La 20.16 19.07 18.90 19.89 20.2 21.5
    Ce 43.12 40.69 39.48 42.44 43.1 45.7
    Pr 5.29 5.09 4.96 5.19 5.22 5.53
    Nd 22.51 21.63 21.01 22.34 21.6 22.9
    Sm 4.94 4.83 4.51 4.88 4.76 4.98
    Eu 1.31 1.35 1.32 1.34 1.23 1.25
    Gd 4.66 4.45 4.27 4.46 4.57 4.72
    Tb 0.70 0.66 0.65 0.68 0.65 0.68
    Dy 4.09 3.84 3.77 3.89 3.82 4.05
    Ho 0.81 0.77 0.75 0.76 0.75 0.80
    Er 2.19 2.12 2.04 2.27 2.15 2.19
    Tm 0.30 0.29 0.28 0.30 0.30 0.32
    Yb 2.02 1.97 1.90 2.03 1.98 2.15
    Lu 0.31 0.29 0.28 0.32 0.31 0.32
    Y 23.45 22.10 21.79 20.89 21.4 22.7
    Hf 1.84 1.51 1.70 1.68 2.23 1.80
    Ta 0.41 0.41 0.39 0.40 0.45 0.46
    Tl 0.23 0.18 0.15 0.19 0.29 0.24
    Pb 11.59 11.35 10.60 11.39 12.9 11.9
    Th 6.51 3.24 2.85 4.57 9.56 5.85
    U 1.22 0.86 0.78 0.92 2.64 1.23
    Nb/Ta 13.93 13.59 14.44 13.65 12.78 13.54
    Th/Yb 3.22 1.64 1.50 2.25 4.83 2.72
    Sr/Y 22.78 24.69 25.51 25.89 21.73 22.29
    Mg# 56.61 55.42 56.26 55.60 54.08 52.19
    下载: 导出CSV

    表  3   朗县英云闪长岩株的Nd-Sr同位素成分

    Table  3   Nd andSr isotopic compositions of Langxian

    样号 LX01 LX02 LX03
    Rb/10-6 63.91 48.72 41.3
    Sr/10-6 534.15 545.59 555.89
    87Sr/84Sr 0.704699±2 0.704600±4 0.704558±5
    87Rb/86Sr 0.346453 0.258571 0.215129
    ISr(93Ma) 0.70424 0.70426 0.70427
    Sm/10-6 4.94 4.83 4.51
    Nd/10-6 22.51 21.63 21.01
    143Nd/144Nd 0.512748±6 0.512738±13 0.512763±4
    147Sm/144Nd 0.132676 0.134999 0.129775
    Sample-143Nd/144Nd(t) 0.5126673 0.5126559 0.5126840
    CHUR-143Nd/144Nd(t) 0.512518 0.512518 0.512518
    εNd(t)(93Ma) 2.91 2.68 3.23
    TDMI(Ma) 908.3 957.0 846.6
    fSm/Nd — 0.74 — 0.74 — 0.75
    TDM2 (Ma) 1480.7 1555.7 1384.5
    下载: 导出CSV
  • [1] 高俊, 钱青, 龙灵利, 等. 西天山的增生造山过程[J]. 地质通报, 2009, 28(12):1804-1816. Gao Jun, Qian Qing, Long Lingli, et al. Accretionary orogenic process of Western Tianshan, China[J]. Geological Bulletin of China, 2009, 28(12):1804-1816(in Chinese with English abstract)
    [2] 肖文交, 侯泉林, 李继亮, 等. 西昆仑大地构造相解剖及其多岛增生过程[J]. 中国科学(D辑), 2000, 30(增刊):22-28. Xiao Wenjiao, Hou Quanlin, Li Jiliang, et al.Tectonic facies and the archipelago-accretion process of the West Kunlun, China[J]. Science in China(Series D),2000, 43(S1):134-143.
    [3] 李继亮. 增生型造山带的基本特征[J]. 地质通报, 2004, 23(9/10):947-951. Li Jiliang. Basic characterisitics of accretion-type orogens[J]. Geological Bulletin of China, 2004, 23(9/10):947-951(in Chinese with English abstract).
    [4] 许志琴, 徐惠芬, 张建新, 等. 北祁连走廊南山加里东俯冲杂岩增生地体及其动力学[J]. 地质学报, 1994, 68(1):1-14. Xu Zhiqin, Xu Huifeng, Zhang Jianxin, et al. The Zhoulangnanshan Caledonian subductive complex in the northern Qilian mountains and its dynamics[J]. Acta Geologica Sinica, 1994, 68(1):1-14(in Chinese with English abstract).
    [5] 张建新, 许志琴, 徐惠芬, 等. 北祁连加里东期俯冲-增生楔结构及动力学[J]. 地质科学, 1998, 33(3):290-299. Zhang Jianxin, Xu Zhiqin, Xu Huifeng, et al. Framewok of North Qilian Caledonian subduction accretionary wedge and its deformation dynamics[J]. Scientia Geologica Sinica, 1998, 33(3):290-299(in Chinese with English abstract).
    [6]

    Chiaradia M, Fontbote' L, Beate B. Cenozoic continental arc magmatism and associated mineralization in Ecuador[J]. Mineralium Deposita, 2004, 39:204-222.

    [7]

    Laznicka P. Giant metallic deposits, future sources of industrial metals[M]. Springer Berlin Heidelberg, 2006:81-152.

    [8]

    Marschik R, Söllner F. Early Cretaceous U-Pb zircon ages for the Copiapó plutonic complex and implications for the IOCG mineralization at Candelaria, Atacama Region, Chile[J]. Mineralium Deposita, 2006, 41:785-801.

    [9]

    Vallance J, Fontboté L, Chiaradia M, et al. Magmatic-dominated fluid evolution in the Jurassic Nambija gold skarn deposits (southeaster Ecuador)[J]. Mineralium Deposita, 2009, 44:389-413.

    [10] 耿全如, 潘桂棠, 王立全, 等. 班公湖-怒江带、羌塘地块特提斯演化与成矿地质背景[J]. 地质通报, 2011, 30(8):1261-1274. Geng Quanru, Pan Guitang, Wang Liquan, et al. Tethyan evolution and metallogenic geological background of the Bangong Co-Nujiang belt and the Qiangtang massif in Tibet[J]. Geological Bulletin of China, 2011, 30(8):1261-1274(in Chinese with English abstract).
    [11]

    Müller D, Forrestal P. The shoshonite porphyry Cu-Au association at Bajo de la Alumbrera, Catamarca Province, Argentina[J]. Mineralogy and Petrology, 1998, 64:47-64.

    [12] 张宏飞, 徐旺春,郭建秋,等.冈底斯南缘变形花岗岩锆石U-Pb年龄和Hf同位素组成:新特提斯洋早侏罗世俯冲作用的证据[J]. 岩石学报, 2007:1347-1353 Zhang Hongfei, Xu Wangchun, Guo Jianqiu, et al. Zircon U-Pb and Hf isotopic composition of deformed granite in the southern margin of the Gangdese belt, Tibet:Evidence for early Jurassic subduction of Neo-Tethyan oceanic slab[J]. Acta Petrologica Sinica, 2007:1347-1353(in Chinese with English abstract)
    [13] 潘桂棠, 莫宣学, 侯增谦, 等. 冈底斯造山带的时空结构及演化[J]. 岩石学报, 2006, 22(3):521-533. Pan Guitang, Mo Xuanxue, Hou Zengqian, et al. Spatialtemporal framework of the Gangdese Orogenic Belt and its evolution[J]. Acta Petrologica Sinica, 2006, 521-533(in Chinese with English abstract)
    [14] 王行军, 王根厚, 李广栋, 等. 西藏西部札达县东北部帮果日-波库蛇绿岩带的发现及其地质意义[J]. 中国地质, 2013, 40(6):1749-1761. Wang Xingjun, Wang Genghou, Li Guangdong, et al. The discovery of Banguori-Boku ophiolite belt in northeastern Zanda County of west Tibet and its geological significance[J]. Geology in China, 2013, 40(6):1749-1761(in Chinese with English abstract).
    [15] 陈炜, 马昌前, 宋志强, 等. 西藏冈底斯带中南部与俯冲有关的早侏罗世花岗闪长岩:锆石U-Pb年代学及地球化学证据[J]. 地质科技情报, 2011, 30(6):1-11 Chen Wei, Ma Changqian, Song Zhiqiang, et al. Subduction-related early Jurassic granodiorite in Xiaodasongduo, the south of middle Gangdise in Tibet:Evidences from Zircon U-Pb geochronology and geochemistry[J]. Geological Science and Technology Information, 2011, 30(6):1-11(in Chinese with English abstract)
    [16] 张万平, 莫宣学, 朱弟成, 等. 西藏朗县蛇绿混杂岩中变辉绿岩和变玄武岩的年代学和地球化学[J]. 成都理工大学学报(自然科学版), 2011, 38(5):538-548. Zhang Wanping, Mo Xuanxue, Zhu Dicheng, et al. Chronology and geochemistry on gabbro and basalt of the ophiolite mélange in Lang County, Tibet, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2011, 38(5):538-548(in Chinese with English abstract).
    [17] 苏学军, 段国玺, 彭兴阶, 等. 西藏乃东-米林地区雅鲁藏布江结合带的地质特征及构造演化[J]. 地质通报, 2006, 25(6):700-707. Su Xuejun, Duan Guoxi, Peng Xingjie, et al. Geological characterisitics and tectonic evolution of the Yarlung Zangbo junction belt in the Nêdong-Mainling area, Tibet, China[J]. Geological Bulletin of China, 2006, 25(6):700-707(in Chinese with English abstract).
    [18] 朱杰, 杜远生, 刘早学, 等. 西藏雅鲁藏布江缝合带中段中生代放射虫硅质岩成因及其大地构造意义[J]. 中国科学(D辑), 2005, 35(12):1131-1139. Zhu Jie, Du Yuansheng, Liu Zaoxue, et al. Mesozoic radiolarian chert from the middle sector of the Yarlung Zangbo suture zone, Tibet and its tectonic implications[J]. Science in China(Series D), 2006, 49(4):348-357.
    [19] 李祥辉, 王尹, 徐文礼, 等. 试论西藏南部上三叠统复理石郎杰学群与涅如组[J]. 地质学报, 2011, 85(10):1551-1562. Li Xianghui, Wang Yin, Xu Wenli, et al. Constrasting the Upper Triassic flysch Langjuexue Group and Nieru Formation in southern Tibet[J]. Acta Geologica Sinica, 2011, 85(10):1551-1562(in Chinese with English abstract).
    [20]

    Liu Y, Hu Z, Gao S. In-situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257:34-43.

    [21]

    Ludwig K R. ISOPLOT 3.00:A Geochronlogical Toolkit for Microsoft Excel[M]. Berkeley Geochronology Center Special Publication, 2003, 4:1-70.

    [22]

    Vavra G, Gebauer D, Schmid R. Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone(Southern Alps):anion microprobe (SHRIMP)study[J]. Contrib. Mineral Petrol., 1996, 122:337-358.

    [23]

    Wu Yuanbao, Chen Daogong,, Xia Qunke, et al. In-situ trace element analyses and Pb-Pb dating of zircons in granulite from Huangtuling, Dabieshan by LA-ICP-MS[J]. Science in China (Series D), 2002, 46(11):1161-1170.

    [24]

    Le Bas M J, Le Maitre R W, treckeisen A and Zanettin B. A chemical classification of volcanic rocks based on the total alkalisilica diagram[J]. Journal of Petrology,1986, 27:745-750.

    [25]

    Maniar P D, Piccolli P M. Tectonic discrimination of granitoids[J]. Geol. Soc. Am. Bull., 1989, 101(5):635-643.

    [26]

    Chen F K,Hegner E, Todt W. Zircon ages,Nd isotopic and chemical composition of orthogneisses from the Black Forest, Germany:Evidence for a Cambrian magmatic arc[J]. Earth Science,2000,88:791-802.

    [27]

    Chen F K,Sibel W,Satir M,et al. Geochronology of the Karadere basement (NW Turkey) and implications for the geological evolution of the Istanbul zone[J]. Earth Science,2002,91:469-48.

    [28]

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geol. Soc. London Spec. Pub., 1989, 42:313-345.

    [29]

    Taylor S R. Trace Element Abundance in Andesite Ⅱ. Saipan, Bougainville and Fiji[J]. Contrib.Mineral. Petrol., 1969, 23:1-26.

    [30]

    Taylor S R, Kaye M. Genetic significance of Co,Cr,Ni,Sc and V content of andesites[J]. Geochimiea et Cosmochimica Acta, 1969, 33:275-286.

    [31]

    Bruce M C, Niu Y. 2000, Evidence for Palaeozoic magmatism recorded in the Late Neoproterozoic Marlborough ophiolite, New England Fold Belt, central Queenland. Australian Journ. Earth Sci., 47:1065-1076.

    [32] 裴先治, 李佐臣, 丁仨平, 等. 西秦岭天水地区岛弧型基性岩浆杂岩的地球化学特征及形成时代[J]. 中国地质, 2005, 32(4):529-540. Pei Xianzhi, Li Zuochen, Ding Saping, et al. Geochemical characteristics and zircon U-Pb ages of island-arc basic igneous complexes in the Tianshui area, West Qinling[J]. Geology in China, 2005, 32(4):529-540(in Chinese with English abstract).
    [33]

    Meschede M A. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram[J]. Chem. Geol., 1986, 56:207-218.

    [34]

    Pearce J A. Trace element characteristics of lave from destructive plate boundaries[C]//Thorpe R S(ed.). Andesites. Chichester:Wiley, 1982:525-548.

    [35]

    Condie K C. Geochemistry and tectonic setting of early proterozoic supracrustal rocks in the southwest united states[J]. J. Geology, 1986, 94:845-861.

    [36] 韦栋梁, 夏斌, 周国庆, 等. 西藏泽当英云闪长岩的地球化学和Sr-Nd同位素特征:特提斯洋内俯冲的新证据[J]. 中国科学(D辑), 2007, 37(4):442-450. Wei Dongliang, Xia Bin, Zhou Guoqing, et al. Geochemistry and Sr-Nd isotope characteristics of tonalites in Zêtang, Tibet:New evidence for intra-Tethyan subduction[J]. Science in China(Series D), 2007, 50(6):836-846.
    [37]

    Rapp R P, Watson E B. Dehydration melting of metabasalt at 8-32 kbar:Implication for continental growth and crust-mantle recycling[J]. J.Petrol., 1995, 36:891-931.

    [38] 朱弟成, 潘桂棠, 莫宣学, 等. 冈底斯中北部晚侏罗世-早白垩世地球动力学环境:火山岩约束[J]. 岩石学报, 2006, 22(3):534-546 Zhu Dicheng, Pan Guitang, Mo Xuanxue, et al. Late Jurassic-Early Cretaceous geodynamic setting in middle-northern Gangdese:New insights from volcanic rocks[J]. Acta Petrologica Sinica, 2006, 22(3):534-546(in Chinese with English abstract).
    [39] 康志强, 许继峰, 陈建林, 等. 藏南白垩纪桑日群麻木下组埃达克岩的地球化学特征及其成因[J]. 地球化学,2009,38(4):334-344. Kang Zhiqiang, Xu Jifeng, Chen Jianlin, et al. Geochemistry and origin of Cretaceous adakites in Mamuxia Formation, Sangri Group, South Tibet[J]. Geochimica, 2009, 38(4):334-344(in Chinese with English abstract).
    [40] 管琪, 朱弟成, 赵志丹, 等.西藏南部冈底斯带东段晚白垩世埃达克岩:新特提斯洋脊俯冲的产物?[J]. 岩石学报, 2010, 26(7):2165-2179. Guan Qi, Zhu Dicheng, Zhao Zhidan, et al. Late Cretaceous adakites in the eastern segment of the Gangdese Belt, southern Tibet:Products of Neo-Tethyan ridge subduction?[J]. Acta Petrologica Sinica, 2010, 26(7):2165-2179(in Chinese with English abstract).
    [41] 管琪, 朱弟成, 赵志丹, 等. 西藏拉萨地块南缘晚白垩世镁铁质岩浆作用的年代学、地球化学及意义[J].岩石学报,2011,27(7):2083-2092. Guan Qi,Zhu Dicheng,Zhao Zhidan,et al. Zircon U-Pb chronology, geochemistry of the Late Cretaceous mafic magmatism in the southern Lhasa Terrane and its implications[J]. Acta Petrologica Sinica,2011, 27(7):2083-2094(in Chinese with English abstract)
    [42]

    Rapp R P, Watson E B. Dehydration melting of metabasalt at 8~32 kbar:Implication for continental growth and crust-mantle recycling[J]. J.Petrol., 1995, 36:891-931.

    [43] 段其发, 王建雄, 白云山, 等. 青海南部蛇绿岩中辉长岩锆石SHRIMP U-Pb定年和岩石地球化学特征[J]. 中国地质, 2009, 36(2):291-299. Duan Qifa, Wang Jianxiong, Bai Yunshan, et al. Zircon SHRIMP U-Pb dating and lithogeochemistry of gabbro from the ophiolite in southern Qinghai Province[J]. Geology in China, 2009, 36(2):291-299(in Chinese with English abstract).
    [44] 张维, 简平. 华北北缘同阳二叠纪闪长岩-石英闪长岩-英云闪长岩套SHRIMP年代学[J]. 中国地质, 2012, 39(6):1593-1603. Zhang Wei, Jian Ping. SHRIMP dating of the Permian Guyang diorite-quartz diorite-onalite suite in the northern margin of the North China Craton[J]. Geology in China, 2012, 39(6):1593-1603(in Chinese with English abstract).
    [45] 王行军, 王根厚, 李广栋, 等. 西藏西部札达县东北部帮果日-波库蛇绿岩带的发现及其地质意义[J]. 中国地质, 2013, 40(6):1749-1761. Wang Xingjun, Wang Genghou, Li Guangdong, et al. The discovery of Banguori-Boku ophiolite belt in northeastern Zanda County of west Tibet and its geological significance[J]. Geology in China, 2013, 40(6):1749-1761(in Chinese with English abstract).
    [46]

    Elburg M A, van Bergen M, Hoogewerff J. Geochemical trends across an arc-continent collision zone:Magma sources and slabwedge transfer processes below the Pantar Strait volcanoes[J]. Indonesia1 Geochimica et Cosmochimica Acta, 2002, 66:2771-2789

    [47]

    Guo Z, Hertogen J, Liu J, et al. Potassic magmatism in western Sichun and Yunnan provinces, SE Tibet, China:Petrological and geochem ical constraints on petrogenesis[J]. Journal of Petrology, 2005, 46:33-78

    [48]

    Green T H. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system Chemical Geology, 1995, 120:347-359.

    [49]

    Wen D R, Liu D Y, Chung S L, et al. Zircon SHRIMP U-Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet[J]. Chemical Geology, 2008, 252(3-4):191-201

    [50]

    Zhang Z M, Zhao G C, Santosh M, et al. Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith, southeastern Tibet:Evidence for Neo-Tethyan mid-ocean ridge subduction?[J]. Gondwana Research, 2010, 17:615-631

图(7)  /  表(3)
计量
  • 文章访问数:  3117
  • HTML全文浏览量:  517
  • PDF下载量:  5284
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-22
  • 修回日期:  2015-03-04
  • 网络出版日期:  2023-09-25
  • 刊出日期:  2016-02-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭