Multi-scale exploration of mineral system: Concept and progress-A case study in the middle and lower reaches of the Yangtze River Metallogenic Belt
-
摘要:
在全球矿产勘查逐渐转向“绿地”、深部和覆盖区的大背景下,急需成矿理论的指导。20世纪末提出的成矿系统概念由于其强大的区域成矿预测功能,引起了矿业界广泛的关注和研究。本文首先回顾了成矿系统的概念、组成和分类,然后讨论了成矿系统主要组成部分的探测和识别方法,最后结合笔者近年在长江中下游成矿带开展的多尺度探测,讨论了陆内典型成矿系统的深部过程、地壳结构和地球物理响应,并对成矿系统概念在成矿预测领域的应用前景进行了展望。本文主要结论:(1)成矿系统是由控制矿床形成和保存所有要素构成的自然系统,基本组成单元包括“源区”、“通道”和“场所”,每个组成单元都包括复杂的物理、化学和动力学过程;(2)矿床是成矿系统多尺度深部过程耦合在某一“点上”的“结果”。成矿系统在演化过程中,各种物理、化学作用对地壳和岩石圈地幔进行了强烈“改造”,留下各种物理、化学和矿物学“痕迹”,这些“痕迹”改变了岩石的地球物理性质,具有很好的可探测性;(3)基于长江中下游多尺度探测结果,提出了陆内典型成矿系统“源区”形成过程、控制岩浆/流体迁移的“通道”和物质沉淀场所的新认识;(4)在地学大数据、机器学习、人工智能不断发展的今天,成矿系统和基于成矿系统的多尺度成矿预测将是未来的重要研究方向。
Abstract:The guidance of metallogenic theory is urgently needed under the background that global mineral exploration is gradually turning to the target at "greenfields", deep earth and coverage areas. The concept of metallogenic system proposed at the end of the last century has attracted extensive attention and study of the mining industry due to its powerful function of regional mineralization forecasting. In this study, first and foremost, the authors review the concept, components and classification of mineral systems. Then the methods of detecting and identifying the main components of the metallogenic system are discussed. Last but not least, the deep process, crustal structure and geophysical response of typical intracontinental metallogenic systems are discussed based on the authors' multi-scale exploration in the middle and lower reaches of the Yangtze River Metallogenic Belt in recent years, and the application of the concept of mineral system in the field of metallogenic prediction is also prospected. The main conclusions of this paper are as follows:(1) The mineral system is a natural system that comprises all the essential factors controlling the formation and preservation of deposits, with basic components of "source", "path" and "site". Each component includes complex physical, chemical and kinetic processes. (2) A deposit is the 'result' of multi-scale deep processes coupling at a certain 'point' in the mineral system. During the evolution of the mineral system, various physical and chemical processes have strongly "modified" the crust and lithospheric mantle, leaving behind various physical, chemical, and mineralogical "footprints" with significant detectability due to the altered geophysical properties. (3) A new model was proposed based on the multi-scale exploration in the middle and lower reaches of the Yangtze River Metallogenic Belt, for the understanding of "source", "path" and "site" of a typical intracontinentalmetallogenic system. (4) Mineral system based multi-scale target predication will be a prospective research direction in the future, with the continuous developing of geoscience big data, machine learning and artificial intelligence.
-
致谢: 感谢《中国地质》编辑部邀请出版此“深部地质调查工程专辑”。编辑部郝梓国、王学明两位老师对专辑的出版给予了精心指导和大力帮助,在此表示衷心感谢。
-
图 1 长江中下游成矿带及邻区构造格架及主要矿集区位置示意图(据Pan and Dong, 1999;Mao et al., 2011修改)
1—晚侏罗—早白垩世花岗岩(156~137 Ma); 2—白垩纪火山岩和次火山岩(< 135 Ma); 3—A型花岗岩带; 4—斑岩-矽卡岩-层控复合型CuAu-Mo矿床(> 135 Ma); 5—矽卡岩型Fe-Cu矿床(> 135 Ma); 6—玢岩型Fe矿床(< 135 Ma); XGF—襄樊—广济断裂; TLF—郯庐断裂; YCF—阳新—常州断裂; 左上角插图显示长江中下游成矿带位置
Figure 1. Geological subdivision of middle and lower Yangtze River metallogenic belt and neighboring areas showing the location of the major ore concentration areas (modified from Pan and Dong, 1999; Mao et al., 2011)
1- Late Jurassic - Early Cretaceous granite (156- 137 Ma); 2- Cretaceous volcanic and subvolcanic (< 135 Ma); 3- A- type granites; 4-Porphyry-skarn-stratabound complex Cu-Au-Mo deposits (> 135 Ma); 5-Skarn Fe-Cu deposit (> 135 Ma); 6-Porphyry-type Fe deposits (< 135 Ma); XGF-Xiangfan-Guangji fault; TLF-Tancheng-Lujiang fault; YCF-Yangxin-Changzhou fault. Insert map shows the location of the middle and lower Yangtze River metallogenic belt
图 2 长江中下游成矿带及典型矿集区多尺度综合地球物理探测工作部署图(据吕庆田等,2015)
1—主要断裂;2—固定地震台站;3—流动地震台站;4—MT测深点;5—反射地震剖面,浅蓝色为非SinoProbe剖面;6—广角反射接收点;7—广角反射激发点。TLF—郯庐断裂;XHF—响水—淮阴断裂;CHF—滁河断裂;MSF—茅山断裂;JNF—江南断裂;SDF—寿县—定远断裂;XMF—晓天—磨子潭断裂;XGF—襄樊—广济断裂
Figure 2. Map showing the layout and location of multi-scale integrated geophysical exploration over the middle and lower Yangtze Metellogenic belt and major ore concentration areas(after Lü et al., 2015)
1-Major faults; 2- Permanent seismic stations; 3- Portable broad-band seismic stations; 4-MT sounding points; 5-Reflection seismic profile, yellow represents non-SinoProbe profiles; 6-Wide-angle stations; 7-Wide-angle shot points. TLF-Tan-Lu Fault; XHF-Xiangshui-Huaiyin Fault; CHF-Chehe Fault; MSF-Maoshan fault; JNF-Jiangnan Fault; SDF-Shouxian-Dingyuan Fault; XMF-Xiaotian-Mozitan Fault; XGF-Xiangfan-Guangji Fault
图 3 长江中下游及邻区区域大地电磁反演结果(据Qiu et al., 2018修改)
a—0~50 km体积电导率图像;b—20 km深度电阻率切片图像;TLF—郯城—庐江断裂;XGF—襄樊—广济断裂;YCF—阳新—常州断裂;JSF—江山—绍兴断裂
Figure 3. The three-dimensional MT inversion results in the middle and lower reaches of Yangtze River and adjacent areas
a- The volume conductivity image from 0 to 50 km; b-The resistivity slice of 20 km in depth; TLF-Tancheng-Lujiang fault; XGF- Xiangfan-Guangji fault; YCF-Yangxing-Changzhou fault; JSF-Jiangshan-Shaoxing fault(modified from Qiu et al., 2018)
图 4 NW-11-01深地震反射偏移剖面片段(a)及地质解释图(b)(据Lü et al., 2015)
注:地质解释背景为地震线条图上。注意沿江凹陷及宁芜火山岩盆地之下的“鳄鱼嘴”构造,以及长江深断裂(CJF)及主逆冲断裂(MTF)的组成和空间形态。TWT—双程走时;Pt–Pz—元古宙—古生代地层;Pz—古生代地层;Mz—中生代地层;E, F, G, 和H表示相对独立的中地壳块体
Figure 4. Part of raw (a) and interpreted (b) migrated seismic line of NW-11-01(after Lü et al., 2015)
Note:The geological interpretation is made on the skeletonized seismic section. Note the"crocodile"structure beneath Yangtze River bed and Ningwu volcanic basin and the spatial features and composition of the Yangtze River deep fault (CJF) and the major thrust fault (MTF). TWT-Two Way Travel Time; Pt-Pz-Proterozoic-Paleozoic strata; Pz-Paleozoic strata; Mz-Mesozoic strata; E, F, G, and H represent comparatively middle crust blocks
-
Chang Yinfo, Liu Xiangpei, Wu Changyan. 1991. Iron-copper Metallogenic Belt in the Middle and Lower Yangtze River[M]. Beijing:Geological Publishing House, 1-379(in Chinese).
Chen L, Zheng T Y, Xu W W. 2006. A thinned lithospheric image of the Tanlu Fault Zone, eastern China:Constructed from wave equation based receiver function migration[J]. Journal of Geophysical Research, 111:B09312. http://cn.bing.com/academic/profile?id=52e8e6a3cdd0425f9567e0fa9a2921c7&encoded=0&v=paper_preview&mkt=zh-cn
Deemer S J, Hurich C A. 1994. The reflectivity of magmatic underplating using the layered mafic intrusion analog[J]. Tectonophysics, 232:239-255. doi: 10.1016/0040-1951(94)90087-6
Deng Jinfu, Wu Zongxu. 2001. Lithospheric thinning event in the lower Yangtze craton and Cu-Fe metallogenic belt in the middle and lower Yangtze River reaches[J]. Geology of Anhui, 11(2):86-91(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ahdz200102002
Dong Shuwen, Qiu Ruilong. 1993. Tectonic and Magmatic Activities in the Anqing-Yueshan Area[M]. Beijing:Geological Publishing House, 1-158(in Chinese).
Drummond B J, Goleby B R, 1993. Seismic reflection images of major ore-controlling structure in the Eastern Goldfields[J]. Western Australia:Expl. Geophys., 24, 473-478. doi: 10.1071/EG993473
Dulfer H, Skirrow R G, Champion D C, Highet L M, Czarnoat K, Coglan R, Milligan R R. 2016. Potential for intrusion-hosted NiCu-PGE sulfide deposits in Australia:A continental-scale analysis of mineral system prospectivity[J]. Geoscience Australia Record, 129. https://www.worldcat.org/oclc/936595460
Fan Yu, Zhou Taofa, Yuan Feng, Qian Cunchao, Lu Sanming, Cooke D. 2008. LA-ICP-MS zircon U-Pb ages of the A-type granites in the Lu-Zong(Lujiang-Zongyang) area and their geological significances[J]. Acta Geologica Sinica, 24(8):1715-1724(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200808005
Fan Yu, Zhou Taofa, Yuan Feng, Zhang Lejun, Qian Bing, Ma Liang, Cooke D. 2010. Geochronology of the diorite porphyrites in NingWu basin and their metallogenic significances[J]. Acta Petrologica Sinica, 26(9):2715-2728(in Chinese with English abstract). https://www.researchgate.net/publication/285876606_Geochronology_of_the_diorite_porphyrites_in_Ning-Wu_basin_and_their_metallogenic_significances
Fan yu, Zhou Taofa, Yuan Feng, Zhang Lejun, Qian Bing, Ma Liang, Xie Jie, Yang Xifei. 2011. Geochronology of the porphyry-like type iron deposits in Ning-Wu Basin:Evidence from 40Ar-39Ar phlogopite dating[J]. Acta Geologica Sinica, 85(5):810-820(in Chinese with English abstract).
Fouch M J, James D E, VanDecar J C, Lee S, Kaapvaal Seismic Group. 2004. Mantle seismic structure beneath the Kaapvaal and Zimbabwe Cratons[J]. S. Afr. J. Geol., 107:33-44. doi: 10.2113/107.1-2.33
Griffin W L, Begg G C, Suzanne Y O'Reilly. 2013. Continental-root control on the genesis of magmatic ore deposits[J]. Nature Geosci., 6:905-910. doi: 10.1038/ngeo1954
Hagemann S G, Cassidy K. 2000. Archean orogenic lode gold deposits[C]//Hagemann S G, Brown P E (eds.). Gold in 2000, SEG Reviews in Economic Geology, 13: 9-68.
Hagemann S G, Angerer T, Duuring P, Rosière C A, Figueiredo E, Silva R C, Lobato L, Hebsler A S, Walde D H G. 2016. BIFhosted iron mineral system:A review[J]. Ore Geol. Rev., 76:317-359. doi: 10.1016/j.oregeorev.2015.11.004
Heinson G, Direen N G, Gill R M. 2006. Magnetotelluric evidence for a deep-crustal mineralizing system beneath the Olympic Dam iron oxide copper-gold deposit, southern Australia[J]. Geology, 34(7):573-576. doi: 10.1130/G22222.1
Heinson G, Didana Y, Soeffky P, Thiel S, Wise T. 2018. The crustal geophysical signature of a world-class magmatic mineral system[J]. Scientific Report, 8:10608. DOI: 10.1038/s41598-018-29016-2.
Huston D L, Mernagh T P, Hagemann S G, Doublier M P, Fiorentini M, Champion D C, Jaques A L, Czarnota K, Cayley R, Skiroow R, Bastrakov E. 2016. Tectonometallogenic systems-the place of mineral systems within tectonic evolution, with an emphasis on Australian examples[J]. Ore Geol. Rev., 76:168-210. doi: 10.1016/j.oregeorev.2015.09.005
Jiang G M, Zhang G B, Lü Q T, et al. 2013.3-D velocity model beneath the Middle-Lower Yangtze River and its implication to the deep geodynamics[J]. Tectonophysics, 606:36-48. doi: 10.1016/j.tecto.2013.03.026
Jiang Guoming, Zhang Guibin, Lü Qingtian, Shi Danian, Xu Yao. 2014. Deep geodynamics of mineralization beneath the MiddleLower Reaches of Yangtze River:Evidence from teleseismic tomography[J]. Acta Petrologica Sinica, 30(4):907-917(in Chinese with English abstract).
Jones A G, Evans R L, Muller M R, Hamilton M P. 2009. Area selection for diamonds using magnetotellurics:Examples from southern Africa[J]. Lithos 112S, 83-92. http://cn.bing.com/academic/profile?id=e5c18bf1e9a1eb0fea419ef45ce6dd3f&encoded=0&v=paper_preview&mkt=zh-cn
Lewis P, Downes P J. 2008. Mineral systems and processes in New South Wales:A project to enhance understanding and assist exploration[J]. N. S. W. Geol. Surv. Quarterly Notes, 128, 1-15.
Li Wenda, Mao Jianren, Zhu Yunhe, Xie Huaguang. 1998. Mesozoic Volcanic Rocks and Deposits in Southeastern China[M]. Beijing:Seismological Press, 1-156(in Chinese).
Ling M X, Wang F Y, Ding X, Hu Y H, Zhou J B, Zartman R E, Yang X Y, Sun W D. 2009. Cretaceous ridge subduction along the Lower Yangtze River belt, Eastern China[J]. Economic Geology, 104:303-321. doi: 10.2113/gsecongeo.104.2.303
Lü Q T, Yan J Y, Shi D N, Dong S W, Tang J T, Wu M A, Chang Y F. 2013. Reflection seismic imaging of the Lujiang-Zongyang volcanic area:An insight into the crustal structure and geodynamics of an ore district[J]. Tectonophysics, 606:60-78. doi: 10.1016/j.tecto.2013.04.006
Lü Qingtian, Dong Shuwen, Shi Danian, Tang Jingtian, Jiang Guoming, Zhang Yongqian, Xu Tao and SinoProbe-03-CJ Group. 2014. Lithosphere architecture and geodynamic model of Middle and Lower Reaches of Yangtze Metallogenic Belt:A review from SinoProbe[J]. Acta Petrologica Sinica, 30(4):889-906(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201404001
Lü Q T, Shi D N, Liu Z D, Zhang Y Q, Dong S W, Zhao J H. 2015. Crustal structure and geodynamic of the Middle and Lower reaches of Yangtze metallogenic belt and neighboring areas:insights from deep seismic reflection profiling[J]. Journal of Asian Earth Science, 114:704-716. doi: 10.1016/j.jseaes.2015.03.022
Lü Qingtian, Dong Shuwen, Tang Jingtian, Shi Danian, Chang Yinfo and SinoProbe-03-CJ Group. 2015a. Multi-scale and integrated geophysical data revealing mineral systems and exploring for mineral deposits at depyh:A synthesis from SinoProbe-03[J]. Chinese Journal of Geophysics, 58(12):4319-4343(in Chinese with English abstract).
Lü Qingtian, Liu Zhendong, Dong Shuwen, Yan Jiayong, Zhang Yongqian. 2015b. The nature of Yangtze River deep fault zone:Evidence from deep seismic data[J]. Chinese Journal of Geophysics, 58(12):4344-4359(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=5155dbd9fdd1b84cebf82ac3b930269c&encoded=0&v=paper_preview&mkt=zh-cn
Lü Qingtian, Shi Danian, Yan Jiayong, Liu Zhendong. 2018.The Mesozoic mineral systems of South China:Lithospheric structure and deep processes constrained from integrated geophysical data-preliminary results[J]. Acta Geologica Sinica, 92(z1):15. http://cn.bing.com/academic/profile?id=f2f69803c8919b60dc6b210ec4d77928&encoded=0&v=paper_preview&mkt=zh-cn
Mao J W, Wang Y T, Lehmann B, Yu J J, Du A D, Mei Y X, Li Y F, Zang W S, Stein H J, Zhou T F. 2006. Molybdenite Re-Os and albite 40Ar/39Ar dating of Cu-Au-Mo and magnetite porphyry systems in the Yangtze River valley and metallogenic implications[J]. Ore Geology Reviews, 29(3/4):307-324. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=50bbaac0ff73025a56c1a391edc3b5cc
Mao J, Xie G, Duan C, Pirajno F, Ishiyama D, Chen Y. 2011. A tectono-genetic model for porphyry-skarn-stratabound Cu-AuMo-Fe and magnetite-apatite deposits along the Middle-Lower Yangtze River Valley, Eastern China[J]. Ore Geology Reviews, 43:294-314. doi: 10.1016/j.oregeorev.2011.07.010
McBridea J H, Whiteb R S, Smallwoodc J R, England R W. 2004.Must magmatic intrusion in the lower crust produce reflectivity?[J] Tectonophysics, 388:271-297. doi: 10.1016/j.tecto.2004.07.055
McCuaig T C, Beresford S, Hronsky, J M A. 2010. Translating the mineral systems approach into an effective exploration targeting system[J]. Ore Geology Reviews, 38:128-138. doi: 10.1016/j.oregeorev.2010.05.008
McCuaig T C, Hronsky J M A. 2014. The mineral system concept:the key to exploration targeting[J]. Soc. Econ. Geol. Spec. Publ., 18:153-176. http://cn.bing.com/academic/profile?id=5728300def13630acaca3fac0de7c9ea&encoded=0&v=paper_preview&mkt=zh-cn
Norman R P. 2003. Geophysical developments and mine discoveries in the 20th century[J]. The Leading Edge, 6:558-561. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c0ebf8bd4f573de0fad0169afae19285
Ouyang L B, Li H Y, Lü Q T, Yang Y J, Li X F, J iang G M, Zhang G B, Shi D N, Zheng D, Sun S J, Tan J, Zhou M. 2014. Crustal and uppermost mantle velocity structure and its relationship to the formation of ore districts in the Middle-Lower Yangtze River region[J]. Earth and Planetary Science Letters, 408:378-389. doi: 10.1016/j.epsl.2014.10.017
Pan Y M, Dong P. 1999. The Lower Changjiang (Yangzi/Yangtze River) metallogenic belt, east central China:Intrusion-and wall rock-hosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits[J]. Ore Geology Reviews, 15:177-242. doi: 10.1016/S0169-1368(99)00022-0
Qiu G G, Fang H, Lü Q Y, Pen Y, He D S, He M X. 2018. Lithospheric Electrical Characteristics of Eastern Jiangnan Orogen, South China[C]//Proceedings of the International Workshop on Environment and Geoscience-Volume 1: 415-420. DOI: 10.5220/0007431204150420.
Richards J P. 2003. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation[J]. Economic Geology, 98:1515-1533. doi: 10.2113/gsecongeo.98.8.1515
Shi D N, Lü Q T, Xu W Y, et al. 2013. Crustal structure beneath the middle-lower Yangtze metallogenic belt in East China:Constraints from passive source seismic experiment on the Mesozoic intracontinental mineralization[J]. Tectonophysics, 606:48-60. doi: 10.1016/j.tecto.2013.01.012
Skinner B J. 2005. Introduction: A Century of Excellence[J]. Economic Geology, 100th Anniv. Vol.: 1-4.
Skirrow R G (ed.). 2009. Uranium ore-forming systems of the Lake Frome region, South Australia: Regional spatial controls and exploration criteria[J]. Geoscience Australia Record, 40: 148.
Sodoudi F, Yuan X, Liu Q, Kind R, Chen J. 2006. Lithospheric thickness beneath the Dabie Shan, central eastern China from S receiver functions[J]. Geophysical Journal International, 166:1363-1367. doi: 10.1111/j.1365-246X.2006.03080.x
Tang Yongcheng, Wu Yanchang, Chu Guozheng. 1998. Geology of Copper-gold Polymetallic Deposits along the Yangtze River in Anhui Province[M]. Beijing:Geological Publishing House, 1-351(in Chinese).
Tao Kuiyuan, Mao Jianren, Yang Zhuliang, Zhao Yu, Xing Guangfu, Xue Huaimin. 1998. Mesozoic petro-tectonic associations and records of the geodynamic processes in southeast China[J]. Earth Science Frontiers, 5(4):183-192(in Chinese with English abstract).
Turneaure F S. 1955. Metallogenetic provinces and epochs[J]. Economic Geology, 50th Anniv. Vol.: 38-98.
Vigneresse J L. 1995a. Control of granite emplacement by regional deformation[J]. Tectonophysics, 249:173-186. doi: 10.1016/0040-1951(95)00004-7
Vigneresse J L. 1995b. Crustal regime of deformation and ascent of granitic magma[J]. Tectonophysics, 249:187-202. doi: 10.1016/0040-1951(95)00005-8
Walshe J L, Cooke D R, Neumayr P. 2005. Five questions for fun and profit: a mineral system perspective on metallogenic epochs, provinces and magmatic hydrothermal Cu and Au deposits[C]//Mineral Deposit Research: Meeting the Global Challenge.Springer, Berlin, Heidelberg, 477-480. doi: 10.1007%2F3-540-27946-6_124
Wang Qiang, Zhao Zhenhua, Xiong Xiaolin, Xu Jifeng. 2001. Melting of the underplated basaltic lower crust:Evidence from the Shaxi adakitic sodic quartz diorite-porphyrites, Anhui Province, China[J]. Geochimica, 30(4):353-362(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=5232c3533ed845beab496041f1fba9e3&encoded=0&v=paper_preview&mkt=zh-cn
Wang Qiang, Zhao Zhenhua, Xu Jifeng, Bai Zhenghua, Wang Jianxin, Liu Chengxin. 2004. The geochemical comparison between the Tongshankou and Yinzu adakitic intrusive rocks in southeastern Hubei:(delaminated) lower crustal melting and the genesis of porphyry copper deposit[J]. Acta Petrologica Sinica, 20(2):351-360(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=a33ba686564aa234575f6fb09982b1a2&encoded=0&v=paper_preview&mkt=zh-cn
Witherly K. 2012. The evolution of minerals exploration over 60 years and the imperative to explore undercover[J]. The Leading Edge, 3:292-295. http://cn.bing.com/academic/profile?id=c5970898b95395fe82b55370bd21ec4b&encoded=0&v=paper_preview&mkt=zh-cn
Witherly K. 2014. Geophysical Expressions of Ore Systems-Our Current Understanding[J]. Society of Economic Geologists, Inc.Special Publication 18, 177-208.
Wyborn L A I, Heinrich C A, Jaques A L. 1994. Australian Proterozoic mineral systems:Essential ingredients and mappable criteria[J]. AusIMM Publ. Ser. 5 (94):109-115. https://www.researchgate.net/publication/263884864_Australian_Proterozoic_mineral_systems_essential_ingredients_and_mappable_criteria
Xie G Q, Mao J W, Li R L, Qü W J, Pirajno F, Du AD. 2007. Re-Os molybdenite and Ar-Ar phlogopite dating of Cu-Fe-Au-Mo (W) deposits in southeastern Hubei, China[J]. Mineralogy and Petrology, 90 (3/4):249-270. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ea84b58963853d355ecd3186ae522e01
Xie G Q, Mao J W, Zhao H J, Duan C, Yao L. 2012. Zircon U-Pb and phlogopite 40Ar-39Ar age of the Chengchao and Jinshandian skarn Fe deposits, Southeast Hubei Province, Middle-Lower Yangtze River Valley metallogenic belt, China[J]. Mineralium Deposita, 47(6):633-652. doi: 10.1007/s00126-011-0367-2
Xing Fengming, Xu Xiang. 1999. Anhui Yangtze Magmatite Belt and Mineralization[M]. Hefei:Anhui People's Publishing House, 1-170(in Chinese).
Xu Jifeng, Wang Qiang, Xu Yigang, Zhao Zhenhua, Xiong Xiaolin. 2001. Geochemistry of Anjishan intermediate-acid intrusive rocks in Ningzhen area:Constraint to origin of the magma with HREE and Y depletion[J]. Acta Petrologica Sinica, 17(4):576-584(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=058eb0df380c6c2aaa7fd88c1561f37c&encoded=0&v=paper_preview&mkt=zh-cn
Xu J F, Shinjo R, Defant M J, Wang Q, Rapp R P. 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China:Partial melting of delaminated lower continental crust?[J]. Geology, 30:1111-1114. doi: 10.1130/0091-7613(2002)030<1111:OOMAIR>2.0.CO;2
Yan Jiayong, Lü Qingtian, Meng Guixiang, Zhao Jinhua, Deng Zhen, Liu Yan. 2011. Tectonic framework research of the lower and middle Yangtze metallogenic belt based on gravity and magnetic multi-scale edge detection[J]. Acta Geologica Sinica, 85(5):909-914(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201105022
Yu Chongwen. 1994. Metallogenic dynamics-theoretical systems and methodologies[J]. Earth Science Frontiers, 1(3):54-82(in Chinese with English abstract).
Yu Chongwen. 2001a. Fractal growth of ore-forming dynamical systems at the edge of chaos-A new metallogeny and methodology(First half)[J]. Earth Science Frontiers, 8(3):9-28(in Chinese with English abstract).
Yu Chongwen. 2001b. Fractal growth of ore-forming dynamical systems at the edge of chaos-A new metallogeny and methodology(Second half)[J]. Earth Science Frontiers, 8(4):471-489(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200104032
Zhai Yusheng, Yao Shuzhen, Lin Xinduo. 1992. Iron-copper (gold) Metallogenic Regularity in the Middle and Lower Reaches of the Yangtze River[M]. Beijing:Geological Publishing House, 1-120(in Chinese).
Zhai Yusheng. 1998. The tectonic evolution and metallogenic system of the paleocontinental margin[C]//Department of Geology, Peking University. Proceedings of the International Geosciences Symposium, Peking University. Beijing: Seismological Press, 769-778(in Chinese with English abstract).
Zhai Yusheng. 1999. On the metallogenic system[J]. Earth Science Frontiers, 6(1):14-27(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201002003
Zhang C, Ma C Q, Holtz F. 2010. Origin of high-Mg adakitic magmatic enclaves from the Meichuan pluton, southern Dabie orogen (central China):Implications for delamination of the lower continental crust and melt-mantle interaction[J]. Lithos, 119:467-484. doi: 10.1016/j.lithos.2010.08.001
Zhang Guomin, Wang Suyun, Li Li, Zhang Xiaodong, Ma Hongsheng. 2002. Seismic source depth and its tectonic significance in China.[J] Science Bulletin, 47(9):663-668(in Chinese).
Zhang K, Lü Q T, Yan J Y, Shao L S, Guo D, Zhang Y W. 2019. The subduction and continental collision of the North China and Yangtze Blocks:Magnetotelluric evidence from the SusongAnqing section of Western Anhui, China[J]. Geophys. J. Int., 216:2114-2128. doi: 10.1093/gji/ggy541
Zhang Minghui, Xu Tao, Lü Qingtian, Bai Zhiming, Wu Chenglong, Wu Zhenbo, Teng Jiwen. 2015.3D Moho depth beneath the middle-lower Yangtze metallogenic belt and its surrounding areas:Insight from the wide angle seismic data[J]. Chinese Journal of Geophysics, 58(12):4360-4372(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=2e832dd8f43f6ff2d0c3dc007a01a749&encoded=0&v=paper_preview&mkt=zh-cn
Zhou Taofa, Wu M G, Fan Y, Duan C, Yuan F, Zhang L J, Liu J, Qian B, Pirajno F and Cooke D. R. 2011. Geological, geochemical characteristics and isotope systematics of the Longqiao iron deposit in the Lu-Zong volcano-sedimentary basin, Middle-Lower Yangtze (Changjiang) River Valley, eastern China[J]. Ore Geology Reviews, 43 (1):154 -169. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f039f9af9a67065a5fa13a6913017504
Zhou Taofa, Fan Yu, Yuan Feng. 2008. Advances on petrogensis and metallogeny study of the mineralization belt of the Middle and Lower Reaches of the Yangtze River area[J]. Acta Petrologica Sinica, 24(8):1665 -1678(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200808001
Zhou Taofa, Fan Yu, Wang Shiwei, White N C. 2017. Metallogenic regularity and metallogenic model of the middle-lower Yangtze River Valley metallogenic belt[J]. Acta Petrologica Sinica, 33(11):3353-3372(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201711002
Zhou X M, Li W X. 2000. Origin of Late Mesozoic igneous rocks in Southeastern China:implications for lithosphere subduction and underplating of mafic magmas[J]. Tectonophysics, 326:269-287. doi: 10.1016/S0040-1951(00)00120-7
Zhou X M, Sun T, Shen W Z, Shu L S, Niu Y L. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China:A response to tectonic evolution[J]. Episodes, 29(1):26-33. http://cn.bing.com/academic/profile?id=8265c4b55de950ade7768c2a1625f1f4&encoded=0&v=paper_preview&mkt=zh-cn
常印佛, 刘湘培, 吴言昌. 1991.长江中下游铜铁成矿带[M].北京:地质出版社, 71-76. 邓晋福, 吴宗絮. 2001.下扬子克拉通岩石圈减薄事件与长江中下游Cu-Fe成矿带[J].安徽地质, 11(2):86-91. doi: 10.3969/j.issn.1005-6157.2001.02.002 董树文, 邱瑞龙. 1993.安庆-岳山地区构造作用及岩浆活动[M].北京:地质出版社, 1-158. 范裕, 周涛发, 袁峰, 钱存超, 陆三明, David R.C. 2008.安徽庐江-枞阳地区A型花岗岩的LA-ICP-MS定年及其地质意义[J].岩石学报, 24(8):1715-1724. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200808005 范裕, 周涛发, 袁峰, 张乐骏, 钱兵, 马良, David R C.2010.宁芜盆地闪长玢岩的形成时代及对成矿的指示意义[J].岩石学报, 26(9):2715-2728. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201009016 范裕, 周涛发, 袁峰, 张乐骏, 钱兵, 马良, 谢杰, 杨西飞. 2011.宁芜盆地玢岩型铁矿床的成矿时代:金云母40Ar-39Ar同位素年代学研究[J].地质学报, 85(5):810-820. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201105015 江国明, 张贵宾, 吕庆田, 史大年, 徐峣. 2014.长江中下游地区成矿深部动力学机制:远震层析成像证据[J].岩石学报, 30 (4):907-917. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201404002 李文达, 毛建仁, 朱云鹤, 谢华光. 1998.中国东南部中生代火山岩与矿床[M].北京:地震出版社, 1-156. 吕庆田, 董树文, 史大年. 2014.长江中下游成矿带岩石圈结构与成矿动力学模型——深部探测(SinoProbe)综述[J].岩石学报, 30(4):889-906. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201404001 吕庆田, 董树文, 汤井田, 史大年, 常印佛, SinoProbe-CJ项目组. 2015a.多尺度综合地球物理探测:揭示成矿系统、助力深部找矿——长江中下游深部探测(SinoProbe-03)进展[J].地球物理学报, 58(12):4319-4343. http://www.cnki.com.cn/Article/CJFDTotal-DQWX201512002.htm 吕庆田, 刘振东, 董树文, 严加永, 张永谦. 2015b.长江深断裂带的构造性质:深地震反射证据[J].地球物理学报, 58(12):4344-4359. http://www.cnki.com.cn/Article/CJFDTotal-DQWX201512003.htm 唐永成, 吴言昌, 储国正. 1998.安徽沿江地区铜金多金属矿床地质[M].北京:地质出版社, 1-351. 陶奎元, 毛建仁, 杨祝良, 赵宇, 邢光福, 薛怀民. 1998.中国东南部中生代岩石构造组合和复合动力学过程的记录[J].地学前缘, 5(4):183-192. doi: 10.3321/j.issn:1005-2321.1998.04.001 王强, 赵振华, 熊小林, 许继峰. 2001.底侵玄武质下地壳的熔融:来自安徽沙溪adakite质富钠石英闪长玢岩的证据[J].地球化学, 30 (4):353-362. doi: 10.3321/j.issn:0379-1726.2001.04.008 王强, 赵振华, 许继峰, 白正华, 王建新, 刘成新. 2004.鄂东南铜山口、殷祖埃达克质(adakitic)侵入岩的地球化学特征对比:(拆沉)下地壳熔融与斑岩铜矿的成因[J].岩石学报, 20(2):351-360. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200402015 邢凤鸣, 徐祥. 1999.安徽扬子岩浆岩带与成矿[M].合肥:安徽人民出版社, 1-170. 许继峰, 王强, 徐义刚, 赵振华, 熊小林. 2001.宁镇地区中生代安基山中酸性侵入岩的地球化学:亏损重稀土和钇的岩浆产生的限制[J].岩石学报, 17(4):576-584. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200104008 严加永, 吕庆田, 孟贵祥, 赵金花, 邓震, 刘彦. 2011.基于重磁多尺度边缘检测的长江中下游成矿带构造格架研究[J].地质学报, 85(5):900-914. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201105022 於崇文. 1994.成矿作用动力学——理论体系和方法论[J].地学前缘, 1(3):54-82. doi: 10.3321/j.issn:1005-2321.1994.03.006 於崇文. 2001a.成矿动力系统在混沌边缘分形生长——一种新的成矿理论与方法论(上)[J].地学前缘, 8(3):9-28. http://d.old.wanfangdata.com.cn/Periodical/dxqy200103002 於崇文. 2001b.成矿动力系统在混沌边缘分形生长——一种新的成矿理论与方法论(下)[J].地学前缘, 8(4):471-489. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200104032 翟裕生, 姚书振, 林新多. 1992.长江中下游地区铁铜(金)成矿规律[M].北京:地质出版社, 1-120. 翟裕生. 1998.古大陆边缘构造演化和成矿系统[C]//北京大学地质系主编.北京大学国际地质科学学术研讨会论文集.北京: 地震出版社, 769-778. 翟裕生. 1999.论成矿系统[J].地学前缘, 6(1):14-27. http://d.old.wanfangdata.com.cn/Periodical/dqxb201705007 张国民, 汪素云, 李丽, 张晓东, 马宏生. 2002.中国大陆地震震源深度及其构造意义[J].科学通报, 47(9):663-668. doi: 10.3321/j.issn:0023-074X.2002.09.004 张明辉, 徐涛, 吕庆田, 白志明, 武澄泷, 武振波, 滕吉文. 2015.长江中下游成矿带及邻区三维Moho面结构:来自人工源宽角地震资料的约束[J].地球物理学报, 58(12):4360-4372. doi: 10.6038/cjg20151203 周涛发, 范裕, 袁峰. 2008.长江中下游成矿带成岩成矿作用研究进展[J].岩石学报, 4(8):1665-1678. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200808001 周涛发, 范裕, 王世伟, Noel C W. 2017.长江中下游成矿带成矿规律和成矿模式[J].岩石学报, 33(11):3353-3372. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201711002