Gold-copper metallogenic characteristics and prospecting potentiality in the Central Tianshan region, Uzbekistan
-
摘要:研究目的
乌兹别克斯坦境内中天山成矿带是该国东部最重要的铜金等关键矿产原料基地,研究典型矿床成矿特征与区域成矿规律,对找矿勘查和中资矿企投资选区具有重要现实意义。
研究方法本文系统收集、整理了区内铜金铀锂等关键矿产分布、典型矿床成矿特征,剖析了铜、金、三稀等金属元素区域地球化学异常特征。
研究结果铜矿床类型为斑岩型,具有共生金、伴生铂族、稀土稀散元素特征,成矿时代为晚石炭世。金矿床类型以浅成低温热液型为主,斑岩型次之,浅成低温热液型金矿成矿时代出现在早二叠世,斑岩型金矿大多集中于晚石炭世。局部产有火山沉积型锂矿、火山岩型铀矿和矽卡岩型铁矿等关键矿产。
结论1∶100万地球化学调查研究成果表明,在安格连、阿尔马雷克矿集区外围仍发育较明显的金铜银等地球化学矿致异常以及显著的“三稀元素”地球化学异常。综合区域成矿地质条件、已知矿集区地球化学特征以及区域地球化学异常分布特征分析认为中天山传统矿集区外围金铜银等传统优势矿产找矿潜力巨大,该地区同样也是“三稀矿产”的有利找矿远景区,重要异常区可作为中资矿企投资的潜在选区。
创新点:梳理总结了乌兹别克斯坦中天山主要金铜矿典型矿床成矿特征;研究区金铜等传统优势矿产找矿潜力
Abstract:This paper is the result of mineral exploration engineering.
ObjectiveThe Middle Tianshan metallogenic belt is a crucial supplier of copper, gold, and other key minerals in eastern Uzbekistan. Analyzing the metallogenic characteristics of typical mineral deposits and the regional minerogenetic regularities is of great practical significance for prospecting and investment of Chinese mining enterprises.
MethodsThis paper systematically collects and sorts out the distribution of key minerals such as copper, gold, uranium and lithium, as well as analyses of the characteristic metallogeny of typical deposits and the regional geochemical anomaly properties related to copper, gold, rare earth, and dispersed elements.
ResultsThe copper deposit is of the porphyry type and is characterized by having symbiotic gold, associated platinum group and rare earth elements. Its metallogenic epoch is during the Late Carboniferous period. The main type of gold deposits is epithermal type, followed by porphyry. The epithermal type gold deposits occurred during the early Permian, while porphyry type gold deposits are mostly concentrated in the late Carboniferous. Some key minerals, such as lithium (volcanic sedimentary type), uranium (volcanic type), and iron (skarn type) are locally produced.
ConclusionsThe results of 1:1 million geochemical investigation indicate the continues presence of significant geochemical anomalies caused by gold, copper and silver mineralization, as well as evident geochemical anomalies of rare earth and dispersed elements on the periphery of the Angren and Almalyk ore concentration regions. Based on the analysis of regional metallogenic conditions, geochemical characteristics of known ore concentration areas and distribution characteristics of regional geochemical anomalies, it is considered that there is significant potential for prospecting traditional superiority resources like gold, copper and silver around the ore concentration areas in the Middle Tianshan Mountains. This region also holds a favorable potential for mineral resource exploration of rare earth and dispersed elements. Additionally, the areas with significant anomalies represent potential prospecting areas for Chinese mining enterprises to invest.
-
1. 引言
天山造山带位于中亚造山带南部,属典型的增生型造山带,是古生代洋盆俯冲-增生的产物,其近东西向延伸超过2000 km(Biske and Seltmann, 2010;Burtman, 2010;Kröner et al., 2014;Dolgopolova et al., 2017;王宗秀等,2017)。该带境外段已发现诸多大型—超大型乃至世界级的矿床(图 1),如乌兹别克斯坦的穆龙套金矿床金资源量约5953 t,阿尔马雷克铜矿床铜储量约2400万t(伴生金品位0.5 g/t,金资源量约3500 t),吉尔吉斯斯坦库姆托尔金矿床金剩余资源量近400 t,塔吉克斯坦吉劳金矿床金储量100余吨,是欧亚最富的金铜成矿区之一(曹积飞等,2016),构成世界上引人瞩目的巨型金铜成矿带(薛春纪等,2014;曹积飞等,2016)。境外天山成矿带除发育金铜矿外,铀、钨等资源也非常丰富。乌兹别克斯坦金储量居世界第2位、产量居世界第9位,铜储量居世界第9位、产量居世界第13位,铀储量居世界第12位、产量居世界第5位,银储量居世界第9位、产量居世界第17位,曾是前苏联时期重要资源基地。
矿床名称:1—科克帕塔斯;2—乌奇库杜克;3—撒乌特拜;4—穆龙套;5—道兹套;6—乌索科沃;7—布吉奈;8—朗加尔;9—乌奇库拉奇;10—扎米坦;11—马尔占布拉克;12—萨米奇;13—提亚塔格;14—英吉奇克;15—亚赫顿;16—卡拉图别;17—汉迪扎;18—阿克塔什;19—苏雷纳塔;20—沙瓦兹;21—阿尔马雷克;22—库尔楚拉克;23—吉兹拉曼赛;24—科奇布拉克;25阿克杰帕;26—萨加尔顿;27—坎占劳;28—阿尔登—拓普坎;29—乌奇科尔;30—吉劳;31—康桥奇;32—撒鲁马特;33—乔烈;34—吉吉科鲁特;35—塔巴斯宾;36—穆什尼亚尔;37—撒乌克赛;38—诺乌姆;39—阿尔琼;40—海达尔坎;41—恰尔奎鲁克;42—琼科依;43—阿克苏;44—库鲁杰格列克;45—马克马尔;46—杰鲁伊;47—塔尔迪布拉克;48—塔尔迪布拉克左岸;49—佩尔维涅茨;50—苏里坦撒雷;51—杰德姆;52—库姆托尔;53—乌奇克什康;54—特鲁多沃伊;55—扎尔库拉克;56—伊什塔姆别尔德;57—博济姆恰克Figure 1. Simplified geotectonic map and deposit distribution in the Tianshan outside China (modified from Konopelko et al., 2011; Soloviev and Kryazhev, 2018)Deposit name: 1-Kokpatas; 2-Uchkuduk; 3-Sautbay; 4-Muruntau; 5-Daugyztau; 6-Usokovol; 7-Budznay; 8-Langar; 9-Uchkulach; 10-Charmitan; 11-Mardzhanburak; 12-Sarmich; 13-Tillyatag; 14-Ingichke; 15-Yakhton; 16-Karatube; 17-Khandiza; 18-Aktash; 19-Surenata; 20-Shavaz; 21-Almalyk; 22-Churkulak; 23-Kygylamasay; 24-Kochbulak; 25-Aktebe; 26-Sagardun; 27-Kandzanlau; 28-Altyntopkan; 29-Uchkol; 30-Jilau; 31-Konchoch; 32-Sarumat; 33-Chorin; 34-Jezhikrut; 35-Tabaspin; 36-Mushniyar; 37-Sayksay; 38-Novum; 39-Archon; 40-Khaidarkan; 41-Chalkuiruk; 42-Chonkoy; 43-Aksu; 44-Kurutegerek; 45-Makmar; 46-Teruy; 47-Taldybulak; 48-Taldybulak levoberezhny; 49-Pervenets; 50-Solton-Sary; 51-Jetym; 52-Kumtor; 53-Uchkoshkon; 54-Trudovoe; 55-Zharkulak; 56-Ishtamberdy; 57-Bozymchak乌兹别克斯坦天山位于整个境外天山造山带的西端,其由南天山和中天山组成,缺失北天山。南天山出露最广,主要分布在乌兹别克斯坦的中西部,是其最重要的金、铀矿聚集区,同时也是银、钨锡及铅锌的矿产地,赋存着著名的Muruntau、Zarmitan、Amantaitau等超大型金矿床,属于“黑色岩系型”金矿。国内外学者围绕穆龙套金矿的矿床成因、成矿物质来源、成矿作用等方面开展了相关研究(Drew et al., 1996; 刘春涌和王永江, 2007; 孟广路等, 2013; Alexeiev et al., 2016; Kempe et al., 2016)。
中天山主体出露于乌兹别克斯坦东部的恰特卡尔—库拉玛地区(图 1)。该区是乌兹别克斯坦东部最重要的金铜矿产资源原料基地,其地质背景、成矿作用、成矿时代明显有别于南天山。前人围绕岩浆作用(Seltmann et al., 2011; Cheng et al., 2018a)、阿尔马雷克斑岩铜矿成矿作用(Seltmann et al., 2014; Zhao et al., 2017)等方面开展了相关研究,对乌兹别克中天山金属矿产区域时空分布规律及找矿潜力等方面研究相对不足。
本次研究基于近年来开展的中国—乌兹别克斯坦国际合作地质调查成果和最新1∶100万地球化学填图成果,分析了区内主要成矿元素区域地球化学异常分布特征,结合成矿地质条件分析,圈定出铜金锂等矿产的有利找矿远景区,供今后地质找矿参考,也可作为中企矿企在乌外投资的潜在选区。
2. 地质背景
乌兹别克斯坦中天山位于北天山和南天山之间,主要由库拉马地块和恰特卡尔地块组成,其北东以塔拉斯—费尔干纳断裂为界,南以北费尔干纳断裂为界,向西呈弧形延伸至克孜勒库姆地区。
中天山自新元古代至晚古生代经历了长期复杂的构造演化(Samygin et al., 2015; Yakubchuk, 2017; 余吉远等, 2018; Zu et al., 2019),晚奥陶世成为哈萨克陆块的一部分(Burtman, 2010),归属于哈萨克斯坦陆块南部活动大陆边缘,沉积了一套稳定的志留纪陆缘沉积建造,主要由复理石沉积、碳酸盐岩沉积、碳酸盐岩-陆源沉积物组成。泥盆系—石炭系受Turkestan洋盆北向俯冲-增生作用的影响,火山岩浆作用剧烈,形成于陆缘火山-岩浆弧环境,是贝尔套—库拉玛火山-岩浆岩带的主要组成部分。泥盆系主要为大陆火山沉积物,下部为安山质、凝灰质熔岩夹玄武岩、安山岩、凝灰岩、砂岩等,上部为流纹岩、英安岩、凝灰质熔岩及凝灰质砂岩。上石炭统在恰特卡尔地区主要是浅水环境的碳酸盐岩沉积,岩性为灰岩、白云岩、粉砂岩、砂岩、砾岩,在库拉玛地区主要是安山岩、粗面安山岩、英安岩、流纹岩及其凝灰岩、砂岩、砾岩等(图 2)。
图 2 中天山火成岩建造分布图(修改自Dolgopolova et al., 2017)1—下志留统浊流沉积;2—二叠纪长英质火山岩;3—二叠纪花岗岩;4—石炭纪花岗岩;5—泥盆纪花岗岩;6—下泥盆统—上石炭统碳酸盐岩;7—石炭纪闪长岩;8—石炭纪弧火山岩;9—泥盆纪弧火山岩;10—断层;11—国界Figure 2. Regional geological map of the Middle Tianshan in Uzbekistan (modified from Dolgopolova et al., 2017)1-Lower Silurian turbidity sediments; 2-Permian felsic volcanic rocks; 3-Permian granites; 4-Carboniferous granites; 5-Devonian granites; 6-Lower Devonian-Upper Carboniferous carbonatites; 7-Carboniferous diorites; 8-Carboniferous arc volcanic rocks; 9-Devonian arc volcanic rocks; 10-Faults; 11-National boundaries区域构造主要以北东向、北西向和近东西向断裂构造为主(图 2)。北西走向断裂构造由一系列近平行的逆断层组成,这些断裂将基岩切割成一系列平行的块体,并影响着区内次火山岩、岩脉及侵入岩体的形成和分布。其次发育近东西向的转换断层和走滑断裂,并伴生一系列开阔褶皱构造。此外还发育一些火山穹隆和破火山口。
伴随Turkestan洋在晚古生代末期的闭合(Burtman, 2015),岩浆作用进入高爆发阶段,恰特卡尔—库拉玛地区在晚石炭世—二叠纪时期岩浆活动十分频繁(图 2),主要是与Turkestan洋盆俯冲增生作用有关的中酸性侵入岩。该时期岩浆作用与区域上斑岩型矿床、浅成低温热液型及矽卡岩型矿床成矿作用密切相关。
区内矿产资源丰富,以金(银)、铜、铅锌和铁矿等金属矿产为主(表 1),主要的矿床类型有浅成低温热液型金矿、斑岩型铜矿、层控型铅锌矿、矽卡岩型铁矿等,区域成矿具有复合-叠加成矿特征。
表 1 乌兹别克斯坦中天山金属矿产特征一览Table 1. Main characteristics of metal minerals in the Middle Tianshan, Uzbekistan3. 区域矿产分布与典型矿床
据笔者不完全统计,中天山恰特卡尔—库拉玛地区已有小型及以上规模矿产地百余处,主要以金、铜为主,此外还分布有铅锌、铁、铀及稀有金属矿产。南部库拉玛地区主要产出金、铜、银、铅锌等矿产,且伴生铂族元素。北部恰特卡尔地主要产出金、铀、铅锌、铁、稀有金属矿产。铜金矿产为乌兹别克斯坦中天山优势矿产,本文选取该地区最具代表性的浅成低温热液型金矿和斑岩型铜矿两类矿床描述其基本成矿特征。
3.1 金属矿产时空分布特征
区域上金、铜矿分布最广,为优势矿种,其次为铅锌矿,铁、锂、铀、钨等矿床仅在恰特卡尔地区零星分布。已发现的矿床类型主要有斑岩型、浅成低温热液型、矽卡岩型、热液型、火山岩型、火山-沉积型及层控型(图 2)。
区域上金矿主要为浅成低温热液型矿床,该类矿床集中分布在库拉玛山东段安格连地区,目前在产矿床均为大型—超大型规模,早二叠世为主成矿期。其次为斑岩型矿床,金通常以铜矿的共生矿种产出,该类矿产分布在库拉玛山西段阿尔马雷克地区,晚石炭世为主成矿期。铜矿以斑岩型矿床为主,该类矿床集中分布在库拉玛山西段阿尔马雷地区,在产矿床均为超大型规模,成矿时代在晚石炭世。矽卡岩型铜矿在北部恰特卡尔地区也有分布,主要为铜矿化点。
铅锌矿主要为矽卡岩型,矿床集中分布在库拉玛山南坡,在恰特卡尔山北坡也有分布,矿床规模南北差异较大,南部以大型—超大型为主,北部以小型和矿化点为主,成矿时代在晚石炭世。
铁矿主要为矽卡岩型,分布在库拉玛山南坡和恰特卡尔山北坡,矿床规模为中型,成矿时期在晚石炭世。火山沉积型锂矿、火山岩型铀矿分布在恰特卡尔地区,均为小型矿床,成矿时代在早二叠世。
研究发现,中天山地区主要金属成矿作用具有复合叠加成矿特征,斑岩型铜矿共生金、伴生银、铂族等元素,浅成低温热液型金矿伴生银,热液脉型银矿伴生金,矽卡岩型铅锌矿伴生银硒碲等。金属矿产的空间分布也极具规律性,以晚古生代晚期岩浆弧环境的斑岩型铜矿为核心,向东至库拉玛东段和恰特卡尔山南坡过渡为浅成低温热液型金矿、热液脉型银矿,再向北至恰特卡尔山过渡为矽卡岩型铜、铅锌、铁矿。向南至库拉玛山南坡过渡为矽卡岩型铅锌矿、钨钼矿。区域上总体形成了与石炭纪—二叠纪岩浆作用有关的Cu-Au-PbZn-Ag-Fe-U稀有金属矿床成矿系列。
3.2 浅成低温热液型矿床
浅成低温热液型金矿是中天山最主要的金矿类型,主要分布在恰特卡尔山南坡和库拉玛山北坡,沿北东方向延伸到吉尔吉斯境内天山段。
该类型金矿床主要以大型—超大型规模、露天采矿为主,在空间上常与晚古生代火山-构造系统有着密切关系,主要形成于岩浆弧和弧后张裂带环境。赋矿层位为上石炭统安山质、英安质火山岩建造,矿床受断裂和火山构造控制明显,矿化与高角度、低角度断裂和角砾岩筒关系密切,成矿时代为二叠纪。本文以克奇布拉克金矿为例总结了该类型矿床主要成矿地质特征。
3.2.1 地质特征
克奇布拉克金矿位于乌兹别克斯坦中天山成矿省库拉玛成矿带中部的北库拉玛山,处于贝尔套—库拉玛火山-深成岩带内(图 2)。该矿床发现于20世纪60年代,赋存在一破火山口西南端,查明为一个大型金矿,储量达160 t。
矿区地层主要是石炭系火山岩建造,岩性主要为粗面岩、安山岩及其凝灰岩和火山碎屑岩。火山岩建造底部是上石炭统粗面安山岩及其熔结角砾岩,其上被粗面安山岩覆盖。侵入岩仅在矿区中部零星出露,为晚石炭世花岗闪长岩岩体,局部出露辉长岩—正长岩杂岩体和中酸性岩墙。矿区火山构造发育,主要表现为环形断裂构造及次级的北东向、近南北向断裂构造,火山构造对成矿作用的控制作用显著(图 3)。
图 3 克奇布拉克金矿床地质图1—第四系沉积物;2—粗面安山岩;3—粗面安山质英安岩;4—安山岩;5—英安岩;6—粗面安山质凝灰岩;7—英安质凝灰岩;8—火山质砂岩;9—石炭纪花岗闪长岩类;10—岩墙(a—辉绿岩,b—花岗斑岩,c—花岗正长斑岩);11—次火山岩体;12—陡倾矿体;13—筒状矿体;14—韧性剪切矿化带;15—破火山口;16—断裂Figure 3. Geological map of the Kochburak gold deposit1-Quaternary sediments; 2-Trachyandensites; 3-Trachyandesidacites; 4-Andesites; 5-Dacites; 6-Trachyandesidacite tuffs; 7-Dacite tuffs; 8-Volcanic sandstones; 9-Carboniferous granodioritic rocks; 10-Dikes (a-Diabases, b-Granite porphyries, c-Granite syenite porphyries); 11-Subvolcanic bodies; 12-Steeply dipping vein ore bodies; 13-Bubular ore bodies; 14-Ductile shear mineralized belt; 15-Caldera; 16-Faults3.2.2 矿体特征
层状火山岩和喷出杂岩层是主要赋矿层位,含矿岩性主要是英安岩、安山质英安岩以及热液-喷发角砾岩。矿体根据产出形态可化为平缓的层状矿体、陡倾斜的网脉状矿体(图 4a)和近直立的爆破岩筒(图 4b)。层状矿体主要分布于不同火山岩层位间的硅化破碎带内,矿体形态相对不规则,金品位较低。陡倾矿体由复杂的网脉和硅化脉组成,硅化脉与走滑剪切断裂有关,是最主要的工业矿体类型。筒状和爆破角砾岩型矿体局限于横向上陡倾斜的塌陷和走滑构造,呈巢状分布。通常富矿体形成于熔结角砾岩(上盘)和凝灰岩(下盘)接触带。
图 4 克奇布拉克金矿深部矿体形态,陡倾斜矿体剖面图(a)和管状矿体剖面图(b)1—第四系沉积物;2—粗面安山岩;3—安山岩;4—粗面英安岩;5—筒状矿体;6—平缓、陡倾矿化带;7—断裂构造;8—石英-碳酸盐脉Figure 4. Morphology of deep ore bodies in Kochburak gold deposit, section of deeply dipping ore bodies (a) and section of tubular ore bodies (b)1-Quaternary sediments; 2-Trachyandesites; 3-Andesites; 4-Trachydacites; 5-Tubular ore bodies; 6-Flat and steeply dipping mineralization belt; 7-Fracture structures; 8-Quartz-carbonate veins主要矿石组分有黄铁矿、黝铜矿、金碲化物、自然银、自然金、复硫酸盐。金呈海绵状、片状、他形不均匀分布,与石英、硫化物、碲化物共生。金的成色范围在280~995,成矿早期金成色较高,低成色金一般与黝铜矿、黄铜矿、碲银矿共生。脉石矿物主要有石英、绿泥石、钠长石、碳酸盐岩等。金的工业品位在3~18.8 g/t,银工业品位在3~18.8 g/t,伴生铜品位达0.3%,此外还有其他伴生组分Te、Sb、Bi、Pb等。
围岩蚀变有黏土化、碳酸盐化、黄铁绢云岩化、硅化,其中硅化蚀变与成矿作用密切相关。矿床蚀变分带明显,内带为绢英岩化带,外带为碳酸盐化带。蚀变带外围普遍发育钠长石-绿泥石-碳酸盐化及与火山活动同期的青磐岩化蚀变,具有多期次蚀变叠加特征。
控矿构造主要为碰撞阶段与挤压作用有关的低角度拆离断层、陡倾斜剪切断裂构造和破火山口构造,区域性拆离断层和剪切断裂构造是主要的导矿构造,破火山口发育的复杂次级断裂系统是主要的容矿构造。
浅成低温热液型金矿床无论是低硫型还是高硫型矿床,其成矿物质来源一般具有多源性特点(祁进平等,2004;陈磊等,2013),既有岩浆来源,又有容矿围岩和基底变质岩成矿元素的加入(Simmons et al., 2000;John et al., 2003;江思宏等,2004;翟伟等,2010;朱江等,2017),不同成矿阶段物质来源也不尽相同。Kovalenker et al.(1997)对克奇布拉克金矿床矿石中黄铁矿硫同位素研究显示,矿石中黄铁矿中δ34S变化范围为-3.36‰~+5.63‰,平均值+4.12‰,蚀变围岩中δ34S值平均+4.12‰,二者硫同位素组成十分相似,成矿阶段方铅矿δ34S值变化范围在+1.18‰~+3.16‰,平均值+2.56‰,闪锌矿δ34S值变化范围在+3.36‰~+5.39‰,平均值+5.04‰。硫化物中硫同位素组成具有一定的塔式效应,正偏向陨石硫,反映了明显的岩浆硫特征(Dube et al., 1998;李楠等,2012;张潮等,2014;张瑞忠等,2016)。
绝大多数浅成低温热液型金矿床都形成于中—新生代(Heald,1987;White and Hedenquist, 1990),少数形成于晚古生代(丰成友等,2000;沙德铭等,2003;翟伟等,2010;Qin et al., 2010),极少数形成于元古宙(Dube et al., 1998)。关于克奇布拉克金矿成矿时代没有精确的年代学数据,而区域上控矿断裂明显切穿上石炭统,结合区域地质背景和成矿特征分析认为成矿作用与二叠纪Turkestan洋盆闭合后进入碰撞造山阶段的构造活动密切相关,推断其成矿时代为早二叠世。
3.3 斑岩型铜矿床
铜矿是乌兹别克斯坦最重要的矿种之一,中天山成矿带集中了乌兹别克斯坦近70%的铜矿资源,而斑岩型铜矿是其最重要的矿床类型。该类型矿床集中分布在南部库拉玛山北坡,产于晚古生代火山-深成岩浆弧环境,含矿建造为晚石炭世与俯冲作用有关的中酸性斑岩体,成矿时代集中在319~306 Ma,成矿元素以铜为主、伴生金、含铂族等元素。以阿尔马雷克、萨雷切库等超大型铜矿床为代表。文章以阿尔马雷克铜矿为例,总结了该类型矿床主要成矿地质特征(图 5)。
图 5 阿尔马雷克矿田地质简图(据Mirkamalov et al., 2011)1—闪长玢岩;2—石英二长斑岩;3—闪长岩、正长闪长岩,陆源碳酸盐岩沉积;4—砾岩、砂岩、灰岩;5—灰岩、白云岩;6—安山质英安岩;7—流纹岩;8—断层(a),断裂带(b);9—石英脉(a),重晶石脉(b);10—铅锌矿体(a),金矿体(b);11—网脉状铜矿范围Figure 5. Geological map of the Almalyk ore-field (modified from Mirkamalov et al., 2011)1-Dioritic porphyrites; 2-Quartz monzonitic porphyries; 3-Diorites, syenodiorites, terrigenous carbonate rocks; 4-Conglomerates, sandstones, limestones, dolomites; 5-Limestones, dolomites; 6-Andesitic quartzites; 7-Rhyolites; 8-Faults (a), fracture zone (b); 9-Quartz veins (a), baritite veins (b); 10-Lead-zinc ore bodies (a), gold ore bodies (b); 11-Area of reticulated copper vein阿尔马雷克铜矿位于中天山成矿带库拉玛地区,大地构造位置处于中天山晚古生代岩浆弧环境,由达尔涅和卡尔玛吉尔两个矿床组成。
3.3.1 地质特征
矿区地层主要是泥盆系和石炭系,南部局部出露志留系变质页岩。泥盆系是由页岩、粉砂岩、砂岩和中-酸性火山岩组成的沉积-火山岩建造,英安斑岩和石英斑岩具高铜背景值特征,常成为斑岩铜矿床围岩。中上泥盆统是碎屑岩-碳酸盐岩建造,底部发育膏盐层,该层位与岩体接触部位容易形成矽卡岩型多金属矿床。石炭系是一套碳酸盐岩建造和火山岩建造,岩性主要是灰岩、白云岩、安山岩、英安岩、凝灰质砂岩等。
矿区内岩浆岩广泛出露,早泥盆世火山岩零星出露,岩性主要有安山岩、英安岩。石炭纪火山岩主要为中酸性熔岩及其碎屑岩。侵入岩十分发育,石炭纪中酸性侵入岩分布最广,常成巨大的复式岩体。早期主要为闪长岩(330~321 Ma,K-Ar法),其次为石英二长闪长岩(319 Ma,K-Ar法),中期为花岗闪长斑岩(311~292 Ma,K-Ar法),晚期为中—酸性岩脉(283~228 Ma,K-Ar法)(蔡宏渊和李福春, 1995)。花岗闪长斑岩与成矿作用密切相关,为同源岩浆演化晚阶段侵位的产物。
构造以近东西向走滑断裂为主,其次为北东向、北西向断裂,断裂构造对成矿具有重要控制意义。
3.3.2 矿体特征
矿体呈网脉状分布,顶部呈倒转穹窿状,具有北西向延伸的趋势。在深部矿体分叉呈枝状,并逐渐尖灭,局部矿段矿体呈透镜状、脉状分布。矿化受断裂带或构造裂隙带控制明显,北东向和东西向断裂交汇处是主要矿化部位。
矿石可分为原生矿石和氧化矿石,原生矿石主要呈细脉浸染状构造,局部呈团块状、角砾状构造。氧化矿石多在地表氧化带中富集。矿石中金属矿物为黄铜矿、黄铁矿、辉钼矿和磁铁矿,其次为磁黄铁矿、黝铜矿、辉铜矿、斑铜矿、方铅矿、闪锌矿等。脉石矿物为石英、方解石、硬石膏。矿石中铜金含量呈正相关,而与钼含量呈负相关。铜品位在0.3%~0.7%,矿石中铜平均品位为0.345%,矿石资源量达70亿t,铜金属资源量达2400万t,共生元素以金为主,品位0.5 g/t,其余可综合回收元素包括银、钼、硒、锗、铼及铂族金属。
矿化具有明显的水平、垂直分带特征。水平分带表现为由中心向外部矿化程度逐渐变弱(图 6a)。垂向自下而上依次为贫矿核部、矿下带、富矿核部、过渡带、外带。
图 6 阿尔马雷克铜矿床剖面图深部矿化分布图(a):1—石英二长斑岩;2—二长岩;3—闪长岩;4—高品位铜矿石分布区;5—中间品位铜矿石分布区;6—低品位铜矿石分布区;7—断裂;8—地质界线;深部蚀变分带图(b):1—石英二长斑岩;2—二长岩;3—断裂;4—石英岩;5—细粒正长岩;6—千枚岩化带;7—青磐岩化带;8—铜矿石核部;9—内带;10—过渡带;11—外带Figure 6. Profile map of Almalyk copper depositDeep mineralization distribution map (a): 1-Quartz monzonitic porphyries; 2-Monzonites; 3-Diorites; 4-High-grade ore distribution range; 5-Medium-grade ore distribution range; 6-Low-grade ore distribution range; 7-Faults; 8-Geological boundaries. Deep alteration zoning map (b): 1-Quartz monzonite porphyries; 2-Monzonites; 3-Faults; 4-Quartzites; 5-Orthoclasites; 6-Phyllitization zone; 7-Propylitization zone; 8-Core of copper ore; 9-Inner zone; 10-Trasitional zone; 11-Outside zone矿床蚀变强烈,具有较好的分带性,由内向外可划分出3个蚀变带:石英钾化带(核部)、石英绢云母化带(核部两侧或上部发育)、青磐岩化带(图 6b)。矿化主要富集在钾化带和石英绢云母化带接触部位。
斑岩铜矿床的形成与晚古生代石英二长斑岩、花岗斑岩等酸性侵入岩体密切相关,赋矿石英二长斑岩K-Ar法测得的年龄为319 Ma(蔡宏渊和李福春,1995),辉钼矿Re-Os法测得年龄为317 Ma(薛春纪等,2013)。
阿尔马雷克斑岩铜矿成矿物质来源具有多源特点,早期(晚石炭世)主要来源以上地幔—下地壳岩浆为成矿物质来源,晚期(早二叠世)有壳源含矿物质的加入(蔡宏渊和李福春,1995;薛春纪等,2013)。而岛弧成熟度对控制该地区斑岩铜矿起着重要作用,该类矿床的形成与晚石炭世—早二叠世时期Turkerstan古洋消减有关的弧岩浆作用密切相关。
4. 找矿潜力
伴随晚古生代Turkestan洋盆的消亡,在中天山恰特卡尔—库拉玛地区形成了与板块俯冲增生作用有关的铜金铁铅锌多金属成矿系列,产出浅成低温热液型、斑岩型等十分典型且重要的矿床类型,并形成该地区阿尔马雷克铜金铅锌矿集区、安格连金矿集区两大重要矿产资源基地,造就了该地区特殊的成矿地质条件,并展现出巨大找矿前景。
研究者最新100万低密度地球化学调查研究成果表明:中天山南部库拉玛地区显示明显的金、铜、银、铅、锌、钨等贵金属、有色金属元素地球化学异常(图 7),铌钽铍锆稀有元素地球化学异常以及镓锗铟铊等分散元素地球化学异常(图 8),且各元素异常具有浓集中心明显、形态规则、异常规模较大、分带性明显等特征,已知金铜等重要矿产地均分布在区域地球化学异常区范围内,综合地质背景分析认为该区域金、铜、银等元素地球化学异常均属矿致异常。
在两大传统矿集区外围的阿尔马雷克矿集区东部(AK-1)、安格连矿集区南部(AG-2)和安格连矿集区东部(AG-3)地区金铜银锌等元素地球化学异常十分发育(图 7a~e),其构造背景、成矿地质条件与两大矿集区十分相似,综合分析认为ALK-1、AG-2、AG-3远景区同样具有寻找相同类型金铜银(锌)矿产的潜力,AG-4远景区具有寻找矽卡岩型铁铅锌铜矿的巨大潜力(图 7f),区域找矿前景广阔。
地球化学调查结果显示:除传统的金铜等金属矿产外,该地区还发育明显的铌-钽-铍-锂稀有金属元素地球化学异常(图 8a~d)和镓-锗-铟-铊等稀散元素地球化学异常(图 8e~h),显示出寻找“三稀矿产”的地球化学找矿潜力。区域上已知火山沉积型锂矿床1处,而异常分布区大面积出露晚古生代酸性侵入岩体,综合分析认为RA-1、RA-2远景区具有寻找伟晶岩型、火山沉积型稀有-稀散金属矿产的找矿潜力(图 8i)。
5. 结论
(1)中天山区域成矿作用具有明显多金属复合成矿特点,空间上成矿作用具有分带性:内带以酸性斑岩体为核心形成斑岩型铜矿床,中带在弧火山岩带形成浅成低温热液型金矿床,外带在岩体与碳酸盐岩地层接触区形成矽卡岩型铁、铅锌矿床。区域上总体形成与石炭纪—二叠纪岩浆作用有关的Cu-Au-PbZn-Ag-Fe-U-稀有金属矿床成矿系列。
(2)浅成低温热液型金矿和斑岩型铜矿床是中天山最主要的矿床类型,成矿规模巨大,矿床时空分布受断裂和火山构造控制明显,金铜、金银常共生产出,区域上两类矿床形成与晚古生代Turkestan洋消亡过程中的弧岩浆作用有关,金成矿作用主要与晚石炭世—早二叠世火山作用密切相关,铜成矿作用与晚石炭纪世酸性岩浆侵入活动密切相关。
(3)地球化学调查显示,中天山除发育金铜银锌等元素地球化学异常外,还发现有铌钽锂铍、镓锗铟铊等三稀元素地球化学异常,结合已知矿区地球化学特征和成矿地质条件综合分析认为中天山库拉玛地区不仅仍具有寻找浅成低温热液型金矿、斑岩型铜矿和矽卡岩型多金属矿床的潜力,而且“三稀矿产”找矿前景巨大。
致谢: 对审稿过程中各位专家为完善本文提出的宝贵建议,以及英文摘要修订过程中洪俊博士和黄观博士给予的建议,表示诚挚感谢。 -
图 1 境外天山地质构造简图及主要矿床分布(修改自Konopelko et al., 2011; Soloviev and Kryazhev, 2018)
矿床名称:1—科克帕塔斯;2—乌奇库杜克;3—撒乌特拜;4—穆龙套;5—道兹套;6—乌索科沃;7—布吉奈;8—朗加尔;9—乌奇库拉奇;10—扎米坦;11—马尔占布拉克;12—萨米奇;13—提亚塔格;14—英吉奇克;15—亚赫顿;16—卡拉图别;17—汉迪扎;18—阿克塔什;19—苏雷纳塔;20—沙瓦兹;21—阿尔马雷克;22—库尔楚拉克;23—吉兹拉曼赛;24—科奇布拉克;25阿克杰帕;26—萨加尔顿;27—坎占劳;28—阿尔登—拓普坎;29—乌奇科尔;30—吉劳;31—康桥奇;32—撒鲁马特;33—乔烈;34—吉吉科鲁特;35—塔巴斯宾;36—穆什尼亚尔;37—撒乌克赛;38—诺乌姆;39—阿尔琼;40—海达尔坎;41—恰尔奎鲁克;42—琼科依;43—阿克苏;44—库鲁杰格列克;45—马克马尔;46—杰鲁伊;47—塔尔迪布拉克;48—塔尔迪布拉克左岸;49—佩尔维涅茨;50—苏里坦撒雷;51—杰德姆;52—库姆托尔;53—乌奇克什康;54—特鲁多沃伊;55—扎尔库拉克;56—伊什塔姆别尔德;57—博济姆恰克
Figure 1. Simplified geotectonic map and deposit distribution in the Tianshan outside China (modified from Konopelko et al., 2011; Soloviev and Kryazhev, 2018)
Deposit name: 1-Kokpatas; 2-Uchkuduk; 3-Sautbay; 4-Muruntau; 5-Daugyztau; 6-Usokovol; 7-Budznay; 8-Langar; 9-Uchkulach; 10-Charmitan; 11-Mardzhanburak; 12-Sarmich; 13-Tillyatag; 14-Ingichke; 15-Yakhton; 16-Karatube; 17-Khandiza; 18-Aktash; 19-Surenata; 20-Shavaz; 21-Almalyk; 22-Churkulak; 23-Kygylamasay; 24-Kochbulak; 25-Aktebe; 26-Sagardun; 27-Kandzanlau; 28-Altyntopkan; 29-Uchkol; 30-Jilau; 31-Konchoch; 32-Sarumat; 33-Chorin; 34-Jezhikrut; 35-Tabaspin; 36-Mushniyar; 37-Sayksay; 38-Novum; 39-Archon; 40-Khaidarkan; 41-Chalkuiruk; 42-Chonkoy; 43-Aksu; 44-Kurutegerek; 45-Makmar; 46-Teruy; 47-Taldybulak; 48-Taldybulak levoberezhny; 49-Pervenets; 50-Solton-Sary; 51-Jetym; 52-Kumtor; 53-Uchkoshkon; 54-Trudovoe; 55-Zharkulak; 56-Ishtamberdy; 57-Bozymchak
图 2 中天山火成岩建造分布图(修改自Dolgopolova et al., 2017)
1—下志留统浊流沉积;2—二叠纪长英质火山岩;3—二叠纪花岗岩;4—石炭纪花岗岩;5—泥盆纪花岗岩;6—下泥盆统—上石炭统碳酸盐岩;7—石炭纪闪长岩;8—石炭纪弧火山岩;9—泥盆纪弧火山岩;10—断层;11—国界
Figure 2. Regional geological map of the Middle Tianshan in Uzbekistan (modified from Dolgopolova et al., 2017)
1-Lower Silurian turbidity sediments; 2-Permian felsic volcanic rocks; 3-Permian granites; 4-Carboniferous granites; 5-Devonian granites; 6-Lower Devonian-Upper Carboniferous carbonatites; 7-Carboniferous diorites; 8-Carboniferous arc volcanic rocks; 9-Devonian arc volcanic rocks; 10-Faults; 11-National boundaries
图 3 克奇布拉克金矿床地质图
1—第四系沉积物;2—粗面安山岩;3—粗面安山质英安岩;4—安山岩;5—英安岩;6—粗面安山质凝灰岩;7—英安质凝灰岩;8—火山质砂岩;9—石炭纪花岗闪长岩类;10—岩墙(a—辉绿岩,b—花岗斑岩,c—花岗正长斑岩);11—次火山岩体;12—陡倾矿体;13—筒状矿体;14—韧性剪切矿化带;15—破火山口;16—断裂
Figure 3. Geological map of the Kochburak gold deposit
1-Quaternary sediments; 2-Trachyandensites; 3-Trachyandesidacites; 4-Andesites; 5-Dacites; 6-Trachyandesidacite tuffs; 7-Dacite tuffs; 8-Volcanic sandstones; 9-Carboniferous granodioritic rocks; 10-Dikes (a-Diabases, b-Granite porphyries, c-Granite syenite porphyries); 11-Subvolcanic bodies; 12-Steeply dipping vein ore bodies; 13-Bubular ore bodies; 14-Ductile shear mineralized belt; 15-Caldera; 16-Faults
图 4 克奇布拉克金矿深部矿体形态,陡倾斜矿体剖面图(a)和管状矿体剖面图(b)
1—第四系沉积物;2—粗面安山岩;3—安山岩;4—粗面英安岩;5—筒状矿体;6—平缓、陡倾矿化带;7—断裂构造;8—石英-碳酸盐脉
Figure 4. Morphology of deep ore bodies in Kochburak gold deposit, section of deeply dipping ore bodies (a) and section of tubular ore bodies (b)
1-Quaternary sediments; 2-Trachyandesites; 3-Andesites; 4-Trachydacites; 5-Tubular ore bodies; 6-Flat and steeply dipping mineralization belt; 7-Fracture structures; 8-Quartz-carbonate veins
图 5 阿尔马雷克矿田地质简图(据Mirkamalov et al., 2011)
1—闪长玢岩;2—石英二长斑岩;3—闪长岩、正长闪长岩,陆源碳酸盐岩沉积;4—砾岩、砂岩、灰岩;5—灰岩、白云岩;6—安山质英安岩;7—流纹岩;8—断层(a),断裂带(b);9—石英脉(a),重晶石脉(b);10—铅锌矿体(a),金矿体(b);11—网脉状铜矿范围
Figure 5. Geological map of the Almalyk ore-field (modified from Mirkamalov et al., 2011)
1-Dioritic porphyrites; 2-Quartz monzonitic porphyries; 3-Diorites, syenodiorites, terrigenous carbonate rocks; 4-Conglomerates, sandstones, limestones, dolomites; 5-Limestones, dolomites; 6-Andesitic quartzites; 7-Rhyolites; 8-Faults (a), fracture zone (b); 9-Quartz veins (a), baritite veins (b); 10-Lead-zinc ore bodies (a), gold ore bodies (b); 11-Area of reticulated copper vein
图 6 阿尔马雷克铜矿床剖面图
深部矿化分布图(a):1—石英二长斑岩;2—二长岩;3—闪长岩;4—高品位铜矿石分布区;5—中间品位铜矿石分布区;6—低品位铜矿石分布区;7—断裂;8—地质界线;深部蚀变分带图(b):1—石英二长斑岩;2—二长岩;3—断裂;4—石英岩;5—细粒正长岩;6—千枚岩化带;7—青磐岩化带;8—铜矿石核部;9—内带;10—过渡带;11—外带
Figure 6. Profile map of Almalyk copper deposit
Deep mineralization distribution map (a): 1-Quartz monzonitic porphyries; 2-Monzonites; 3-Diorites; 4-High-grade ore distribution range; 5-Medium-grade ore distribution range; 6-Low-grade ore distribution range; 7-Faults; 8-Geological boundaries. Deep alteration zoning map (b): 1-Quartz monzonite porphyries; 2-Monzonites; 3-Faults; 4-Quartzites; 5-Orthoclasites; 6-Phyllitization zone; 7-Propylitization zone; 8-Core of copper ore; 9-Inner zone; 10-Trasitional zone; 11-Outside zone
表 1 乌兹别克斯坦中天山金属矿产特征一览
Table 1 Main characteristics of metal minerals in the Middle Tianshan, Uzbekistan
-
Alexeiev D V, Cook H E, Jenchuraeva A V, Mikolaichuk A V. 2016. The stratigraphic, sedimentological and structural evolution of the southern margin of the Kazakhstan Continent in the Tien Shan Range during the Devonian to Permian[C]//Brunet M F, McCann T, Sobel E R (eds. ). Geological Evolution of Central Asian Basins and the Western Tien Shan Range. London: Special Publications, 427.
Biske Y S, Seltmann R. 2010. Paleozoic Tian-Shan as a transitional region between the Rheic and Urals-Turkestan Oceans[J]. Gondwana Research, 17: 602-613. doi: 10.1016/j.gr.2009.11.014
Burtman V S. 2010. Tien Shan, Pamir, and Tibet: History and geodynamics of Phanerozoic oceanic basins[J]. Geotectonics, 44 (5): 388-404. doi: 10.1134/S001685211005002X
Burtman V S. 2015. Tectonics and geodynamics of the Tian Shan in the Middle and Late Paleozoic[J]. Geotectonics, 49(4): 67-85.
Cai Hongyuan, Li Fuchun. 1995. Geological characteristics of the Almarek Porphyry Copper Deposit: Mineralization and enrichment conditions and metallogenic models[J]. Mineral Resources and Geology, 9(47): 180-184 (in Chinese).
Cao Jifei, Wang Bin, Meng Guanglu, Li Baoqiang, Ma Zhongping, Chen Bo. 2016. Major gold deposit type and regional metallogenic regularity on Tianshan ore-forming belt, Kyrgyzstan[J]. Geological Science and Technology Information, 25(1): 140-146 (in Chinese with English abstract).
Chen Lei, Zou Haiyang, Yang Mu. 2013. The present situation of study on epithermal gold deposit[J]. Land and Resources Herald, 10(10): 78-80 (in Chinese).
Cheng Z G, Zhang Z C, Turesebekov A, Nurtaev B S, Xu L J, Santosha M. 2018a. Petrogenesis of gabbroic intrusions in the Valerianov-Beltau-Kurama magmatic arc, Uzbekistan: The role of arc maturity controlling the generation of giant porphyry Cu-Au deposits[J]. Lithos, 320/321: 75-92. doi: 10.1016/j.lithos.2018.08.039
Cheng Z G, Zhang Z C, Chai F M, Hou T, Santosh M, Turesebekov A, Nurtaev B S. 2018b. Carboniferous porphyry Cu-Au deposits in the Almalykorefield, Uzbekistan: The Sarycheku and Kalmakyr examples[J]. International Geology Review, 60(1): 1-20. doi: 10.1080/00206814.2017.1309996
Dolgopolova A, Seltmann R, Konopelko D, Biske Y S, Shatov V. Armstrong R, Belousova E, Pankhurst R, Koneev R, Divaex F. 2017. Geodynamic evolution of the western Tien Shan, Uzbekistan: Insights from U-Pb SHRIMP geochronology and Sr-Nd-Pb-Hf isotope mapping of granitoids[J]. Gondwana Research, 47: 76-109. doi: 10.1016/j.gr.2016.10.022
Drew L J, Berger B R, Kurbanov N K. 1996. Geology and structural evolution of the Muruntau gold deposit, Kyzylkum desert, Uzbekistan[J]. Ore Geology Reviews, 11: 175-196. doi: 10.1016/0169-1368(95)00033-X
Dube B, Dunning G R, Lauziere K. 1998. Geology of the Hope Brook Mine, Newfoundland, Canada: A preserved Late Proterozoic high-sulfidation epithermal gold deposit and its implications for exploration[J]. Economic Geology, 93(4): 405-436. doi: 10.2113/gsecongeo.93.4.405
Feng Chengyou, Xue Chunji, Ji Jinsheng, Zhang Lianchang, Li Huaqin. 2000. Geochemistry of the Xitan epithermal gold-silver deposit, east Tianshan mountains[J]. Mineral Deposits, 19(4): 322-329 (in Chinese with English abstract).
Heald P. 1987. Comparative anatomy of volcanic-hosted epithermal deposits: Acid-sulfate and adularia-sericite types[J]. Economic Geology, 8(1): 1-26.
Jiang Sihong, Nie Fengjun, Zhang Yi, Hu Peng. 2014. The latest advances in the research ofepithermal deposits[J]. Earth Science Frontiers, 11(2): 401-411 (in Chinese with English abstract).
John D A, Hofstra A H, Fleck R J. 2003. Geologic setting and genesis of the Mule Canyon Low-Sulfidation Epithermal Gold-Silver Deposit, North-Central Nevada[J]. Economic Geology, 98(2): 425-463. doi: 10.2113/gsecongeo.98.2.425
Kempe U, Graupner T, Seltmann R, deBoorder H, Dolgopolova A, van Emmichoven M Z. 2016. The Muruntau gold deposit (Uzbekistan)——A unique ancient hydrothermal system in the southern Tien Shan[J]. Geoscience Frontiers, 7(3): 495-528. doi: 10.1016/j.gsf.2015.09.005
Konopelko D L, Biske Y S, Kullerud K, Seltmann R, Divaev F K. 2011. The Koshrabad granite massif in Uzbekistan: Petrogenesis, metallogeny, and geodynamic setting[J]. Russian Geology and Geophysics, 52(12): 1563-1573. doi: 10.1016/j.rgg.2011.11.009
Kovalenker V A, Safonov Y G, Naumov V B. 1997. The epithermal gold-Telluride Kochbulak Deposit (Uzbekistan)[J]. Geology of Ore Deposits, 39(2): 127-152.
Kröner A, Kovach V, Belousova E, Hegner E, Armstrong R. 2014. Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt[J]. Gondwana Research, 25: 103-125. doi: 10.1016/j.gr.2012.12.023
Li Nan, Yang Liqiang, Zhang Chuang, Zhang Jing, Lei Shibin, Wang Hengtao, Wang Hongwei, Gao Xue. 2012. Sulfur isotope characteristics of the Yangshan gold belt, West Qinling: Constraints on ore-forming environment and material source[J]. Acta Petrologica Sinica, 28(5): 1577-1587 (in Chinese with English abstract).
Liu Chunyong, Wang Yongjiang. 2007. Primary discussion on the characteristics of the gold deposit in black shale series in central Asian——And the prospecting target of black shale series in Xinjiang[J]. Xinjiang Geology, 25(1): 34-39 (in Chinese with English abstract).
Meng Guanglu, Wang Bin, Li Baoqiang, Cao Jifei, Fan Baocheng. 2013. Research progress of the Muruntau gold deposit in Uzbekistan[J]. Geological Science and Technology Information, 36(2): 50-59 (in Chinese).
Qi Jinping, Chen Yanjing, Li Qiangzhi. 2004. The epithermal deposits in the northern margin of North China Craton: Spatiotemporal distribution and tectonic setting[J]. Journal of Mineralogy and Petrology, 24(3): 82-92 (in Chinese with English abstract).
Qin K, Sun S, Li J. 2010. Paleozoic epithermal Au and porphyry Cu deposits in North Xinjiang, China: Epochs, features, tectonic linkage and exploration significance[J]. Resource Geology, 52(4): 291-300.
Samygin S G, Kheraskova T N, Kurchavov A M. 2015. Tectonic evolution of Kazakhstan and Tien Shan in Neoproterozoic and Early-Middle Paleozoic[J]. Geotectonics, 49(3): 219-241. doi: 10.1134/S0016852114060065
Seltmann R, Konopelko D, Biske G, Divaev F, Sergeev S. 2011. Hercynian post-collisional magmatism in the context of Paleozoic magmatic evolution of the Tien Shan orogenic belt[J]. Journal of Asian Earth Science, 42: 821-838. doi: 10.1016/j.jseaes.2010.08.016
Seltmann R, Porter T M, Pirajno F. 2014. Geodynamics and metallogeny of the central Eurasian porphyry and related epithermal mineral systems: A review[J]. Journal of Asian Earth Sciences, 79: 810-841. doi: 10.1016/j.jseaes.2013.03.030
Soloviev S G, Kryazhev S G. 2018. Geology, mineralization, and fluid inclusion characteristics of the Kashkasu W-Mo-Cu skarn deposit associated with a high-potassic to shoshonitic igneous suite in Kyrgyzstan, Tien Shan: Toward a diversity of W mineralization in Central Asia[J]. Journal of Asian Earth Sciences, 153: 425-449. doi: 10.1016/j.jseaes.2017.11.020
Sha Deming, Dong Lianhui, Wu Ruishen, Tian Changlie, Jia Bin. 2003. The geochemical characteristics and ore-forming model of the epithermal gold deposit in West Tianshan Mountains[J]. Northwestern Geology, 36(2): 50-59 (in Chinese with English abstract). doi: 10.3969/j.issn.1009-6248.2003.02.007
Simmons S F, Arehart G, Simpson M P. 2000. Origin of massive calcite veins in the Golden Cross Low-Sulfidation, epithermalAu-Ag deposit, New Zealand[J]. Economic Geology, 95(1): 99-112. doi: 10.2113/gsecongeo.95.1.99
Wang Zongxiu, Li Chunlin, Pak Nikolai, Ivleva Elena, Yu Xinqi, Zhou Gaozhi, Xiao Weifeng, Han Shuqin, Halilov Zailabidin, Takenov Nurgazy, Yan Xili. 2017. Tectonic division and Paleozoic Ocean-continent transition in Western Tianshan Orogen[J]. Geology in China, 44(4): 623-641 (in Chinese with English abstract).
White N C, Hedenquist J W. 1990. Epithermal environments and styles of mineralization: variations and their causes, and guidelines for exploration[J]. Journal of Geochemical Exploration, 36(1/3): 445-474.
Xue Chunji, Duan Shigang, Chai Fengmei, Muhetaer Maimaiti, Туресебеков А Х, Qu Wenjun. 2013. Metallogenetic epoch of the Almalyk porphyry copper ore field, Uzbekistan, and its geological significance[J]. Earth Science Frontiers, 20(2): 197-204 (in Chinese with English abstract).
Xue Chunji, Zhao Xiaobo, Mo Xuanxue, Dong Lianhui, Gu Xuexiang, Nurtaev Bakhtiar, Pak Nikolay, Zhang Zhaochong, Wang Xinli, Zu Bo, Zhang Guozhen, Feng Bo, Liu Jiaying. 2014. Asia gold belt in western Tianshan and its dynamic settings, metallogenic control and exploration[J]. Earth Science Frontiers, 21(5): 128-155 (in Chinese with English abstract).
Yakubchuk A. 2017. Evolution of the Central Asian Orogenic Supercollage since Late Neoproterozoic revised again[J]. Gondwana Research, 47: 372-398. doi: 10.1016/j.gr.2016.12.010
Yu Jiyuan, Ji Bo, Wang Guoqiang. 2018. Geochemistry of dioritic enclaves related to magmatic mixing in the concentrically zoned Alatage igneous complex, central Tianshan Mountains[J]. Geology in China, 45(4): 767-782 (in Chinese with English abstract).
Zhai Wei, Sun Xiaoming, Sun Liwei, He Xiaoping, Wu Youliang. 2010. Axi gold deposit: A Paleozoic low-sulfidation type of epithermal gold deposit in Xinjiang, China[J]. Earth Science Frontiers, 17(2): 266-285 (in Chinese with English abstract).
Zhang Chao, Liu Yu, Liu Xiangdong, Feng Jianqiu, Huang Tao, Zhang Qing, Wang Xudong. 2014. Characteristics of sulfur isotope geochemistry of the Xincheng gold deposit, Northwest Jiaodong[J]. Acta Petrologica Sinica, 30(9): 2495-2506 (in Chinese with English abstract).
Zhang Ruizhong, Wang Zhongliang, Wang Sirui, Liu Yu, Qin Wenkai. 2016. Metallognic mechanism of Dayingezhuang gold deposit, northwestern Jiaodong Peninsula: Geochemistry constrains from the gold bearing pyrite typomorph and sulfur isotope]J]. Acta Petrologica Sinica, 32(8): 2451-2464 (in Chinese with English abstract).
Zhao X B, Xue C J, Chi G X, Mo X X, Nurtaev B, Zhang G Z. 2017. Zircon and molybdenite geochronology and geochemistry of the Kalmakyr porphyry Cu-Au deposit, Almalyk district, Uzbekistan: Implications for mineralization processes[J]. Ore Geology Reviews, 86: 807-824. doi: 10.1016/j.oregeorev.2017.04.008
Zhu Jiang, Peng Sanguo, Peng Lianhong, Lei Tianci, Gong Yinjie, Liu Xing'an. 2017. Geology, fluid inclusion characteristics, and U-Pb age of the Dongxi epithermal gold deposit, Anhui Province[J]. Acta Petrologica et Mineralogical, 36(5): 593-607 (in Chinese with English abstract).
Zu B, Seltmann R, Xue C J, Wang T, Dolgopolova A, Li C, Zhou L M, Pak N, Ivleva E, Chai M C, Zhao X B. 2019. Multiple episodes of late Paleozoic Cu-Au mineralization in the Chatkal-Kurama terrane: New constraints from the Kuru-Tegerek and Bozymchak skarn deposits, Kyrgyzstan[J]. Ore Geology Reviews, 113: 103007.
蔡宏渊, 李福春. 1995. 阿尔玛雷克斑岩铜矿地质特征——矿化富集条件及成矿模式[J]. 矿产与地质, 9(47): 180-184. 曹积飞, 王斌, 孟广路, 李宝强, 马中平, 陈博. 2016. 吉尔吉斯斯坦天山成矿带主要金矿类型及区域成矿规律[J]. 地质科技情报, 25(1): 140-146. 陈磊, 邹海洋, 杨牧. 2013. 浅成低温热液型金矿的研究现状[J]. 国土资源导刊, 10(10): 78-80. 丰成友, 薛春纪, 姬金生, 张连昌, 李华芹. 2000. 东天山西滩浅成低温热液金矿床地球化学[J]. 矿床地质, 19(4): 322-329. 江思宏, 聂凤军, 张义, 胡朋. 2004. 浅成低温热液型金矿床研究最新进展[J]. 地学前缘, 11(2): 401-411. doi: 10.3321/j.issn:1005-2321.2004.02.010 李楠, 杨立强, 张闯, 张静, 雷时斌, 王恒涛, 王宏伟, 高雪. 2012. 西秦岭阳山金矿带硫同位素特征: 成矿环境与物质来源约束[J]. 岩石学报, 28(5): 1577-1587. 刘春涌, 王永江. 2007. 初论中亚黑色岩系型金矿床的基本特征——兼论新疆黑色岩系型金矿找矿方向[J]. 新疆地质, 25(1): 34-39. 孟广路, 王斌, 李宝强, 曹积飞, 范堡程. 2013. 乌兹别克斯坦穆龙套金矿床研究进展[J]. 地质科技情报, 32(5): 160-167. 祁进平, 陈衍景, 李强之. 2004. 华北克拉通北缘浅成低温热液矿床: 时空分布和构造环境[J]. 矿物岩石, 24(3): 82-92. 沙德铭, 董连慧, 毋瑞身, 田昌烈, 贾斌. 2003. 西天山地区浅成低温热液型金矿地质特征及成矿模式[J]. 西北地质, 36(2): 50-59. 王宗秀, 李春麟, Pak Nikolai, Ivleva Elena, 余心起, 周高, 肖伟峰, 韩淑琴, Halilov Zailabidin, Takenov Nurgazy, 鄢犀利. 2017. 西天山造山带构造单元划分及古生代洋陆转换过程[J]. 中国地质, 44(4): 623-641. doi: 10.12029/gc20170401 薛春纪, 段士刚, 柴凤梅, 木合塔尔买买提, Туресебеков А Х, 屈文俊. 2013. 乌兹别克斯坦Almalyk斑岩铜矿田成矿时代及其地质意义[J]. 地学前缘, 20(2): 197-204. 薛春纪, 赵晓波, 莫宣学, 董连慧, 顾雪祥, Nurtaev Bakhtiar, Pak Nikolay, 张招崇, 王新利, 俎波, 张国震, 冯博, 刘家瑛. 2014. 西天山"亚洲金腰带"及其动力背景和成矿控制与找矿[J]. 地学前缘, 21(5): 128-155. 余吉远, 计波, 王国强. 2018. 中天山阿拉塔格环状杂岩体中闪长质包体地球化学与岩浆混合作用[J]. 中国地质, 45(4): 767-782. doi: 10.12029/gc20180409 翟伟, 孙晓明, 苏丽薇, 贺小平, 吴有良. 2010. 新疆阿希金矿: 古生代的低硫型浅成低温热液金矿床[J]. 地学前缘, 17(2): 266-285. 张潮, 刘育, 刘向东, 冯建秋, 黄涛, 张庆, 王旭东. 2014. 胶西北新城金矿床硫同位素地球化学[J]. 岩石学报, 30(9): 2495-2506. 张瑞忠, 王中亮, 王偲瑞, 刘育, 秦文凯. 2016. 胶西北大尹格金矿床成矿机理: 载金黄铁矿标型及硫同位素地球化学约束[J]. 岩石学报, 32(8): 2451-2464. 朱江, 彭三国, 彭练红, 雷天赐, 龚银杰, 刘兴平. 2017. 安徽东溪浅成低温热液型金矿床成矿流体特征和形成时代——流体包裹体和赋矿安山岩U-Pb年代学约束[J]. 岩石矿物学杂志, 36(5): 593-604.