Geochemical characteristics and evaluation of ecological environment and human health of selenium in soil-crop-human system in Shuangyang River Basin, Heilongjiang
-
摘要:研究目的
典型黑土地分布区土壤硒自然禀赋、成因来源、生态环境效应及人体健康评价为健康地质研究焦点, 开展双阳河流域土壤-作物-人体系统中硒迁移与累积的定量研究, 对黑土地富硒农产品开发和地方病防治具有重要意义。
研究方法测定成土母质、土壤、大气降尘、灌溉水、作物籽实和人发等多介质硒含量, 运用GIS、SPSS软件对测试结果统计分析及评价。
研究结果划定富硒土地46.4 km2, 主要沿双阳河及其支流分布; 硒以人为成因为主, 主要来源于大气降尘补充, 输入通量为0.21~1.47 kg/km2·a。土壤、大豆、水稻、玉米和人发硒含量均值为0.305 mg/kg、0.0352 mg/kg、0.0287 mg/kg、0.0198 mg/kg和0.145 mg/kg; 作物对土壤硒的富集系数(0.120)远小于1, 人发对作物硒的富集系数(4.834)大于1, 揭示人发对硒具有较强的浓缩和放大作用, 硒在土壤-作物-人体系统中的迁移与积累呈"V"字型模式。
结论土壤硒含量整体为足硒或富硒, 无硒潜在环境风险。大豆、水稻富硒占比为28.4%、9.4%, 未发现硒超标情况, 无生物硒中毒风险。人发硒含量明显低于参考值0.20~0.60 mg/kg, 人体处于缺硒状态, 随年龄增长呈递减趋势, 可能存在一定的健康风险, 应引起地方相关部门关注。
创新点:基于系统的生态地球化学数据,运用统计分析学原理,开展典型黑土区土壤-作物-人体系统中硒迁移与积累研究,为富硒农产品开发和地方病防治提供科学依据。
Abstract:This paper is the result of ecological geological survey engineering.
ObjectiveThe natural endowment, genetic source, ecological environment effect and human health evaluation of soil selenium in typical black soil distribution areas are the research focus of healthy geology, a quantitative study on the migration and accumulation of selenium in the soil-crop-human system in the Shuangyang River Basin was carried out.The development of selenium-rich agricultural products in black soil and the prevention and control of endemic diseases are of great significance.
MethodsThe selenium content of parent material, soil, atmospheric dust, irrigation water, crop seeds and human hair was determined, and the results were statistically analyzed and evaluated by GIS and SPSS software.
ResultsThe selenium-enriched land is 46.4 km2, mainly distributed along the Shuangyang River and its tributaries; the selenium is largely caused by human beings, mainly from atmospheric dust supplementation with an input flux of 0.21-1.47kg/km2·a.The mean selenium contents of soil, soybean, rice, corn and human hair are 0.305 mg/kg, 0.0352 mg/kg, 0.0287 mg/kg, 0.0198 mg/kg and 0.145 mg/kg.The enrichment coefficient of selenium from crops to soil (0.120) is much less than 1, and the enrichment coefficient of selenium from human hair to crops (4.834) is greater than 1, indicating that human hair has a strong concentration and amplification effect on selenium.The migration and accumulation of selenium in the soil-crop-human system shows a "V" -shaped pattern.
ConclusionsIn general, the selenium content in the soil is sufficient or rich with no potential environmental risk.Soybean and rice are rich in selenium, accounting for 28.4% and 9.4%, with no selenium exceeding the standard and poisoning in organisms.The content of selenium in human hair is significantly lower than the reference value of 0.20-0.60 mg/kg, indicating that the human body is in a state of selenium deficiency, and the selenium content tends to decrease with age.There may be certain health risks, which should arouse the attention of local relevant departments.
-
Keywords:
- selenium /
- soil /
- crops /
- human hair /
- human health /
- black soil quality /
- ecological geological survey engineering
-
1. 引言
硒具有抗氧化、抗癌变、抗病毒等生理功能,是含硒蛋白的关键组成物质,参与人体一系列重要的生理代谢(Muller et al., 1969;Hakanson et al., 1980;Qin et al., 2013;Hosnedlova et al.,2017)。人体对硒具有一定量的营养需求,缺硒会引起诸多疾病,如白肌病、桑椹状心脏病、克山病和大骨头病等(谭见安等,1998;曾昭华等, 1998, 2001;Ferreira et al., 2005;刘发欣,2007;Tan et al., 2012;Chen et al., 2012;赵君等,2021;Xiu et al., 2022);同样,生活在土壤硒含量高于3.0 mg/kg的区域,存在硒中毒的风险(程伯容等,1980;林克惠等2009;戴慧敏等,2015;迟凤琴等,2016)。硒一般通过“土壤-作物-人体”或“土壤-作物-动物-人体”的食物链方式(李海华等,2000;胡省英等,2003;陈文德等,2009;梁帅等,2021),以及人体直接暴露在硒源区时人体皮肤接触和呼吸吸入的方式进入人体(廖自基,1989;李婷等,2020)。饮食摄入是人体最主要的硒摄入方式,90%的硒均来源于此(白志鹏等,2002),人体硒含量水平直接取决于食物硒含量,间接取决于土壤和水中的硒含量。
本文基于“典型地区1∶5万土地质量调查及成果转化应用研究”课题所获取的黑龙江省双阳河流域成土母质、表层土壤、作物籽实、灌溉水、大气干湿沉降物和人发等原始数据,探讨硒在土壤-作物-人体系统中的含量特征及生态环境与人体健康评价,为地方富硒农产品开发和地方病防治提供依据。
2. 研究区概况
区域上位于新华厦系第二沉降带松嫩凹陷东北部,自白垩纪以来,区域地层处于东西向倾斜构造状态,自东向西,由下而上沉降有巨厚白垩系陆相碎屑岩层,包括厚度较大的古近—新近系下—中新统依安组含煤的泥页岩层(夹有数层粉、细砂岩)和古近—新近系上新统孙吴组疏松的砂岩、砂砾岩、砂质泥岩等(图 1)。受晚新近世构造运动和小兴安岭影响,高平原区(东北部)相对上升,低平原区(西南部)继续下降,第四系覆盖物由自东北向西南增厚,前第四系绝大部分被第四系覆盖,仅于高平原沟谷强烈切剖处出露(黑龙江省第四纪地质及环境,1990)。
双阳河流域地处黑龙江省齐齐哈尔市东南角,坐标47°17'~47°54'N、125°29'~126°31'E,属寒温带大陆性季风气候,夏短多雨,秋季早霜,四季温差较大,年均气温1.2℃、降水量488.2 mm、日照2730 h。地貌为小兴安岭松嫩平原漫岗丘陵地带,海拔高度260~280 m,地势总体北高南低,地表坡度2°~4°。为黑龙江省农作物品种积温区划第三积温带(2300°~2500°),适于农耕,耕地类型主要为旱地,其次为水浇地。土壤类型主要为黑土(北部和东南部)、草甸土(中部)和黑钙土(西南部)。
3. 材料与方法
3.1 样品采集与测试
3.1.1 样品采集
参照《土地质量地球化学评价》(DZ/T 0295—2016)规范,表层土壤样品采集选用网格法,密度4点/km2,深度20 cm,刻槽取样;样品原始重量大于1500 g,由3个子样组合而成,任意2个子坑间距大于30 m,子样坑呈三角形分布。成土母质样品按高硒区、过渡区、低硒区分类采集,深度1.6~2.0 m。土壤剖面样品采集按成土母质类型布置,深度1.6~2.0 m,密度1个/20 cm。作物及根系土样品采集依据表层土壤样品测试结果,采集富硒区大豆、水稻等作物籽实及同位置根系土样品。灌溉水样品采集主要沿双阳河自上游至下游依次采集,密度1点/3 km。大气降尘样品采集选用大气干湿沉降法,降尘桶口径28.3 cm,固定于距地面约5 m的高处,取样周期一年。人发采集对象主要为常年居住在当地的人群,采集距头皮2.5 cm之内的发样,重5~10 g。样品采集点位信息见图 2和表 1。
图 2 地球化学样品采样分布1—成图母质;2—土壤剖面;3—黄豆及根系土;4—水稻及根系土;5—黄豆及根系土;6—干湿沉降;7—灌溉水;8—人发;9—乡镇;10—村庄Figure 2. Sampling locations of geochemical samples1-Mapping parent material; 2-Soil profile; 3-Soybean and root soil; 4-Rice and root soil; 5-Soybean and root soil; 6-Dry and wet sedimentation; 7-Irrigation water; 8-Human hair; 9- Township; 10-Village表 1 地球化学样品类型及数量统计Table 1. Types and quantity statistics of geochemical samples3.1.2 样品测试
样品测定了Se、pH、Corg等指标,测试单位为自然资源部沈阳地质矿产监督检测中心,主要采用电感耦合等离子体发射光谱法(ICP-OES)、原子荧光法(AFS)等测试方法。样品测试精密度、准确度和数据报出率等质量参数均符合《多目标地球化学调查规范》(DZ/T0258—2014)和《生态地球化学评价样品分析技术要求》(DD 2005-03),分析质量可靠,数据准确。
3.2 数据分析与研究方法
3.2.1 数据统计
文中描述性统计、方差计算等内容均是通过SPSS ver.22.0(IBM,New York,NY,USA)完成。土壤硒含量的空间分布图使用ArcGIS 10.2(ESRI,Redlands,CA,USA)绘制。其他统计图是通过Origin 2019(OriginLab,Northampton,USA)绘制。
3.2.2 大气干湿沉降
大气干湿沉降Se元素沉降通量(Q大气)的计算公式为:
(1) 式中:Q大气为大气干湿沉降中Se元素沉降通量,kg/km2;C干为干沉降中Se元素的含量,mg/kg;W干为接尘桶中干沉降的质量,g;C湿为湿沉降中Se元素的浓度,mg/L;V湿为接尘桶中湿沉降的体积,mL;A为接尘桶口面积,取490.86 cm2。
4. 硒地球化学分析
4.1 土壤硒含量特征
表层土壤样品测试数据统计显示(表 2),硒含量为0.13~2.12 mg/kg,变异系数0.243,为中等程度变异,反映硒在该区域分布不均匀,可能受到后期人为活动的影响(赵燕等,2021)。土壤硒(Se)平均含量为0.305 mg/kg,高于黑龙江土壤背景值0.147 mg/kg,是其2.07倍(中国土壤元素背景值,1990)。土壤有机碳(Corg)含量为0.86~6.50%,均值为2.40%;酸碱度(pH)为5.16~9.35,均值为6.96。
表 2 表层土壤硒等主要指标含量统计Table 2. Statistics of selenium elements in surface soil4.2 作物硒含量特征
作物籽实样品测试数据统计显示(表 3),作物籽实硒含量为0.014~0.057 mg/kg,均值为0.03 mg/kg,不存在硒含量超标样品,变异系数为0.209。不同类型作物籽实的硒含量差异较大,大豆、水稻和玉米三种作物籽实硒含量最大值和最小值均依次降低,三者均值为0.0352 mg/kg、0.0287 mg/kg和0.0198 mg/kg,其中大豆变异系数为0.229,达中度变异。
表 3 作物硒含量参数统计(mg/kg)Table 3. Statistics of selenium in surface soil (mg/kg)4.3 人发硒含量特征
人发是人体硒元素的排泄器官之一,其硒含量实际上就是人体在一段时间里向头发排泄该元素的量,从而可反映出硒在体内的整体代谢状况。人发硒含量一般比血液、尿液的高,并且人发具有取材方便、不损伤人体、易于保存和运输等优点,被看作是一种理想的活体硒检测材料和环境污染指示器(秦俊法等, 2003, 2005)。人发样品测试数据统计显示(表 4),硒含量为0.099~0.192 mg/kg,均值为0.145mg/kg。
表 4 人发中硒含量特征统计(mg/kg)Table 4. Statistical table of selenium content in human hair (mg/kg)5. 硒生态环境与人体健康评价
5.1 富硒土壤成因来源
从土壤硒元素地球化学图 3可以发现,硒含量高值区整体沿双阳河及其支流分布,分布形态与地形地貌关系密切,地势低洼区有利于硒元素在水动力的驱动下沉淀富集,在长荣村附近土壤硒含量最高,达2.12 mg/kg,高硒区是低硒区含量的16.3倍(表 2)。依据《天然富硒土地划定与标识》(DD2019-10)划分方案,当pH均值≤7.5时,w(Se)>0.4 mg/kg为富硒土壤,调查区富硒样品占比8.31%,面积约46.4 km2。
富硒土壤的形成除了与成土母质有关外,还与表生环境中硒的迁移循环过程有关(魏振山等,2016)。成土母质是土壤形成的物质基础和大多矿质养分元素的最初来源,其类型及特征是决定土壤硒含量的重要因素(翟富荣等,2020;梁帅等,2021)。成土母质样品硒含量均值为0.065 mg/kg(表 5),指示其不具备地质成因的本底硒高含量的条件,自然成土后人类活动产生了重要影响。土壤垂向剖面样品硒含量由表层到深层整体呈递减趋势(表 5,图 4),表层含量是深层的5~10倍,说明表层土壤存在明显的硒富集。
表 5 成土母质、土壤剖面硒含量统计(mg/kg)Table 5. Statistics of selenium content in parent material and soil profile(mg/kg)大气干湿沉降是硒输入土壤的一种重要途径,是弥补农田生态系统硒输出的重要方式,研究表明每年大气圈接受天然和人为硒总量为15×109 g(王子健等,1989;朴河春等,1995;秦海波等,2009)。15个干湿沉降桶全年接收点实测数据见表 6,依据公示(1)计算出大气干湿沉降硒输入通量为0.21~1.47 kg/km2·a,揭示大气降尘为土壤硒的主要补充来源,与夏学齐等(2012)学者的研究结果一致。农田灌溉对于提高农作物的产量和品质具有重要的意义,也是硒元素进入土壤的驱动力之一;21件灌溉水样品硒(表 6,部分样品测试结果低于检测限0.0002 mg/L)年输入通量统计结果普遍较低,小于0.002 kg/km2,排除灌溉水是土壤硒元素的主要来源。因此,表层土壤硒富集主要来自大气降尘补充,为人类金属冶炼、火力发电、冬季取暖等生产活动中煤燃烧所致(陈冰如等,1989;张莹,2007;田贺忠等,2009),其次来源于成土母质,灌溉水提供的硒源较少。
表 6 大气降尘、灌溉水硒含量参数统计Table 6. Statistics of selenium content in atmospheric dustfall and irrigation water5.2 土壤硒潜在环境风险及生态效应
参照谭见安等(1998)对全国范围内土壤硒含量与地方病的对比研究给出的土壤硒含量生态环境风险监管界限值,划定土壤硒含量潜在环境风险红线为0.125 mg/kg,代表土壤硒缺乏;黄线为0.175 mg/kg,代表土壤硒存在潜在不足(表 7)。2767件土壤测试结果统计显示,无红线以下样品,黄线以下样品为22件,占比0.80%;土壤硒含量平均水平相对较高,整体为足硒或富硒,无硒潜在环境风险,但空间上表现出较大的变异性,零星存在土壤硒潜在不足的地块;硒含量均低于土壤硒中毒阈值3.0 mg/kg,不存在土壤硒超标,无生物硒中毒风险。
表 7 土壤硒潜在环境风险划分标准Table 7. Classification criteria for potential environmental risks of soil selenium作物从土壤中主动或被动吸收硒,受硒有效态量制约(刘红等,2000;梁帅等,2021)。大豆、水稻、玉米三种作物对硒元素的BCF作物/土壤(BCF=作物籽实硒含量/根系土硒含量,根系土硒含量均值为0.25 mg/kg)分别为0.141、0.115、0.792,整体远小于1(BCF作物/土壤=0.120),大豆、水稻、玉米硒富集程度依次降低。81件大豆样品中有23件样品硒含量>0.04 mg/kg,达到富硒食品标准,占比28.4%;32件水稻样品中有3件样品硒含量>0.04 mg/kg,达到富硒食品标准,占比9.4%;玉米中未发现富硒样品。
人体摄入作物籽实及其产品后,微量元素又富集在人体不同的组织或器官中,通常其含量高于作物(Mi型),甚至高于土壤(Mj型);人发对作物的BCF人发/作物大于1(CF人发/作物=4.834),偶也有低于作物含量的情况出现(Mk型);硒元素沿土壤-作物-人发迁移路径的积累曲线整体呈“V字型”(图 5),说明人发对硒具有较强的浓缩和放大作用。
图 5 硒在土壤—作物—人发系统中的迁移与积累模式(据马建华等修改,2014)Figure 5. Migration and accumulation patterns of selenium in soil-crop-human hair system (modified from Ma Jianhua et al., 2014)5.3 人体健康评价
人发硒含量受性别、年龄、居住环境、饮食和生活习惯等诸多因素影响(秦俊法等,2003),因此不同国家和地区人发硒参考值存在较大差别。研究区女性头发硒含量均高于男性(表 8),可能与女性的生活习惯、体质和运动量有关,造成体内硒累积量高于男性(梁刚等,2012)。人发硒含量均值为0.145 mg/kg,明显低于参考值范围0.20~0.60 mg/kg(中国微量元素科学研究会标准,2007),反映采集样本整体处于缺硒状态,可能存在一定健康风险。
表 8 不同性别人发硒含量(mg/kg)Table 8. The content of selenium in human hair of different genders (mg/kg)不同年龄组人发硒含量统计见表 9,人发硒含量自8~20岁年龄段至>70岁年龄段均呈下降趋势,且人发硒含量与年龄段之间的相关系数为-0.408*(*代表在0.05水平(双侧)上显著相关),呈显著负相关性,均说明人发中硒含量随着年龄的增长呈递减趋势,可能与人体的代谢水平有关(Trojanowski et al., 2010;Perumal et al., 2011),应引起地方相关部门关注。
表 9 不同年龄段人发硒含量(mg/kg)Table 9. The content of selenium in human hair of different age groups (mg/kg)6. 结论
(1)划定富硒土壤面积46.4 km2,主要沿双阳河及其支流分布,成因以人为成因为主,主要来自大气降尘(输入通量为0.21~1.47 kg/km2·a)补充,为人类金属冶炼、火力发电、冬季取暖等生产活动中煤燃烧所致。
(2)土壤硒含量0.13~2.12 mg/kg,均值为0.305 mg/kg,是黑龙江土壤背景值2.07倍,变异系数为0.243,达到中等变异。大豆、水稻和玉米三种作物籽实硒含量均值分别为0.0352 mg/kg、0.0287 mg/kg和0.0198 mg/kg。人发硒含量为0.099 ~192 mg/kg,均值为0.145 mg/kg。作物对土壤硒的BCF作物/土壤远小于1(BCF作物/土壤=0.120),而人发对作物硒的BCF人发/作物大于1(BCF人发/作物=4.834),硒沿土壤-作物-人发迁移路径的积累曲线整体呈“V字型”,说明人发对硒具有较强的浓缩和放大作用。
(3)土壤硒含量整体为足硒或富硒,无硒潜在环境风险和生物硒中毒风险。作物籽实均未发现硒超标情况,大豆富硒占比28.4%,水稻富硒占比9.4%,玉米中未发现富硒样品。人发硒含量明显低于参考值0.20~0.60 mg/kg,人体处于缺硒状态,随年龄增长呈递减趋势,可能存在一定的健康风险,应引起地方相关部门关注。
-
图 2 地球化学样品采样分布
1—成图母质;2—土壤剖面;3—黄豆及根系土;4—水稻及根系土;5—黄豆及根系土;6—干湿沉降;7—灌溉水;8—人发;9—乡镇;10—村庄
Figure 2. Sampling locations of geochemical samples
1-Mapping parent material; 2-Soil profile; 3-Soybean and root soil; 4-Rice and root soil; 5-Soybean and root soil; 6-Dry and wet sedimentation; 7-Irrigation water; 8-Human hair; 9- Township; 10-Village
图 5 硒在土壤—作物—人发系统中的迁移与积累模式(据马建华等修改,2014)
Figure 5. Migration and accumulation patterns of selenium in soil-crop-human hair system (modified from Ma Jianhua et al., 2014)
表 1 地球化学样品类型及数量统计
Table 1 Types and quantity statistics of geochemical samples
表 2 表层土壤硒等主要指标含量统计
Table 2 Statistics of selenium elements in surface soil
表 3 作物硒含量参数统计(mg/kg)
Table 3 Statistics of selenium in surface soil (mg/kg)
表 4 人发中硒含量特征统计(mg/kg)
Table 4 Statistical table of selenium content in human hair (mg/kg)
表 5 成土母质、土壤剖面硒含量统计(mg/kg)
Table 5 Statistics of selenium content in parent material and soil profile(mg/kg)
表 6 大气降尘、灌溉水硒含量参数统计
Table 6 Statistics of selenium content in atmospheric dustfall and irrigation water
表 7 土壤硒潜在环境风险划分标准
Table 7 Classification criteria for potential environmental risks of soil selenium
表 8 不同性别人发硒含量(mg/kg)
Table 8 The content of selenium in human hair of different genders (mg/kg)
表 9 不同年龄段人发硒含量(mg/kg)
Table 9 The content of selenium in human hair of different age groups (mg/kg)
-
Bai Zhipeng, Jia Chunrong, Wang Zongshuang, Zhu Tan. 2002. The relationship between human exposure to indoor and outdoor air pollutants and potential doses[J]. Journal of Environment and Health, 19(6): 425-428(in Chinese with English abstract).
Chen Huaiman. 2012. An original discovery: selenium deficiency and Keshan disease(an endemic heart disease)[J]. Asia Pacific Journal of Clinical Nutrition, 21(3): 320-326.
China Environmental Monitoring Center. 1990. Background Value of Soil Elements in China[M]. Beijing: China Environmental Science Press(in Chinese with English abstract).
Chi Fengqin, Xu Qiang, Kuang Enjun, Zhang Jiuming, Wei Dan, Su Qingrui, Han Jinze. 2016. Distribution of selenium and its influencing factors in soils of Heilongjiang Province[J]. Acta Pedologica Sinica, 53(5): 1262-1274(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_trxb201605017.aspx
Cheng Borong, Ju Shanjain, Yue Shurong, Hei Rongzhen, Sheng Shijun. 1980. Study on the Se in soils of northeastem China[J]. Acta Pedologica Sinica, 17(1): 55-61(in Chinese with English abstract).
Dai Huimin, Gong Chuandong, Dong Bei, Liu Chi, Sun Shumei, Zhen Chunying. 2015. Distribution characteristics and influencing factors of soil selenium in the Northeast Plain[J]. Acta Pedologica Sinica, 52(6): 1356-1364(in Chinese with English abstract).
Ferreira B L, De Miguel E. 2005. Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment[J]. Atmospheric Environment, 39(25): 4501-4512. doi: 10.1016/j.atmosenv.2005.03.026
Chen Xiangyou, Zhang Hongxu, Qin Junfa, Liang Dongdong, Wang Guangyi, Li Zengxi. 2007. Standards of the Chinese society for the study of trace elements[J]. World Elemental Medicine, 14(3): 39-46(in Chinese with English abstract).
Hakanson L. 1980. An ecological risk index for aquatic pollution control a sediment to logical approach [J]. Water Research, 14(8): 975-1001. doi: 10.1016/0043-1354(80)90143-8
Heilongjiang Provincial Bureau of Geology and Mineral Resources No. 1 Hydrogeology Engineering Geology Brigade, Ministry of Geology and Mineral Resources Hydrology Command 904 Hydrology and Quality Engineering Geology Brigade. 1990. Quaternary Geology and Environment of Heilongjiang Province[M]. Beijing: Ocean Press(in Chinese with English abstract).
Hosnedlova B, Kepinska M, Skalickova S, Femandez C, Ruttkay-Nedecky B, Malevu TD, Sochor J, Baron M, Melcova M, Zidkova J, Kizek R. 2017. A summary of new findings on the biological effects of selenium in selected animal species——A critical review[J]. International Journal of Molecular Sciences, 18(10): 2209. doi: 10.3390/ijms18102209
Hu Shengying, Ran Weiyan, Fan Hongrui. 2003. Geochemical behavior of heavy metal elements in soil-crop system[J]. Geology and Prospecting, 39(5): 84-87(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT200305019.htm
Li Haihua, Liu Jianwu, Li Shuren, Shen Canjie, Jia Jimei, Zhang Yufa, Ding Tongqi. 2000. Research progress on heavy metal pollution and crop enrichment in soil-plant system[J]. Journal of Henan Agricultural University, 34(1): 30-34(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NNXB200001008.htm
Li Ting, Wu Minghui, Wang Yue, Yang Huaju, Tang Chundong, Duan Changqun. 2020. Advances in research on the effects of human disturbance on biogeochemical processes of heavy metals and remediation[J]. Acta Ecologica Sinica., 40(13): 4679-4688(in Chinese with English abstract).
Liang Gang, Liu Xuan, He Hui, Liu Xinhui. 2012. Determination and correlation analysis of heavy metals in human hair of urban population in Xinmin City[J]. Environmental Science & Technology, 35(10): 112-115(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-FJKS201210023.htm
Liang Shuai, Zhu Jianxin, Dai Huimin, Song Yunhong, Liu Kai, Han Xiaomeng, Zhai Furong. 2021. Migration and enrichment of selenium in soil-plant system in baiquan area, Heilongjiang Province[J]. Geology and Resources, 30(4): 456-464, 478(in Chinese with English abstract).
Liao Ziji. 1989. Pollution Hazards and Migration and Transformation of Trace Metal Elements in the Environment[M]. Beijing: Science Press, 26-28(in Chinese with English abstract).
Lin Kehui, Zhao Ping, Zu Yanqun. 2009. Toxic effects of trace elements on crops and human body and its control[J]. Journal of Yunnan Agricultural University, 17(1): 94-98(in Chinese with English abstract).
Liu Hong, Ma Yanming, He Zhongyi, Xia Jian. 2000. The relationship between the characteristics of human hair trace elements and the geochemical environment[J]. Journal of East China Jiaotong University, 17(3): 63-67(in Chinese with English abstract).
Liu Faxin. 2007. Human Dealth Risk Assessment of Heavy Metals in Regional Soils and Agricultural Products[D]. Ya'an: Sichuan Agricultural University(in Chinese with English abstract).
Ma Jianhua, Ma Shiyuan, Chen Yunzeng. 2014. Migration and accumulation of heavy metals in soil-erop-hair system in a sewage irrigation area, Henan, China[J]. Acta Scientiae Circumstantiae, 34(6): 1517-1526(in Chinese with English abstract). http://www.researchgate.net/publication/287379031_Migration_and_accumulation_of_heavy_metals_in_soil-crop-hair_system_in_a_sewage_irrigation_area_Henan_China
Muller G. 1969. Index of geoaccumulation in sediments of the Rhime River[J]. Geological Journals, (2): 109-118. http://www.researchgate.net/publication/303060644_Index_of_geoaccumulation_in_sediments_of_the_Rhine_River
Piao Hechun, Liu Guangshen. 1995. Preliminary evidence for the formation of Se deficiency in a particular monsoon climate in China [J]. Geology and Geochemistry, (6): 40-43(in Chinese with English abstract).
Perumal A S, Thangamani A. 2011. Atomic absorption spectrophoto metric determination of heavy metals lead and chromium levels in human hair of people living in Katpadi and Yelagiri Hills of Vellore District[J]. International Journal of Research in Ayurveda and Pharmacy, 2(5): 1563-1570. http://www.oalib.com/paper/2756416
Qin Junfa, Li Zengxi, Liang Dongdong. 2003. Hair Trace Element Analysis and Disease Diagnosis Dish[M]. Zhengzhou: Zhengzhou University Press(in Chinese with English abstract).
Qin Haibo, Zhu Jianming, Zhu Yongxuan, Lei Lei. 2009. Advances in research on atmospheric selenium[J]. Earth and Environment, 37(3): 304-314(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDQ200903018.htm
Qin H B, Zhu J M, Liang L, Wang M S, Su H. 2013. The bioavailability of selenium and risk assessment for human selenium poisoning in high Se areas[J]. Environment International, 52: 66-74. doi: 10.1016/j.envint.2012.12.003
Tan Jian'an, Hou Shaofan, Zhu Wenyu. 1998. Research on the etiology of low-selenium belt, Keshan disease and Kashin-Beck disease in my country[J]. Bulletin of the Chinese Academy of Sciences, (1): 54-60(in Chinese with English abstract).
Tan J A, Zhu W, Wang W, Li R B, Hou S F, Wang D C, Yang L S. 2002. Selenium in soil and endemic diseases in China [J]. Science of the Total Environment, 284(1/3): 227-235. http://eurekamag.com/pdf.php?pdf=003929681
Trojanowski P, Trojanowski J, Antonowicz J. 2010. Lead and cadmium content in human hair in Central Pomerania(Northern Poland)[J]. Journal of Elementology, 15(2): 363-384. http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.agro-article-3fbeb4dd-9422-4105-8127-3adef037c5a4/c/jelem.2010.15.2.13.pdf
Wang Zijian, Zhao Lihua, Peng An. 1989. Study on the volatilization process of selenium in low-selenium zone soil[J]. Environmental Chemistry, 8(2): 7-12(in Chinese with English abstract).
Wei Zhenshang, Tu Qijun, Tan Shuhong, Wang Huabing, Zhao Xuejiao, Bai Jinqi. 2016. A discussion on the geochemical features and origin of selenium-rich soil on the northern slope of the Tianshan Mountains from Urumqi to Shawan County [J]. Geophysical and Geochemical Exploration, 40(5): 893 -898(in Chinese with English abstract).
Xia Xueqi, Yang Zhongfang, Xue Yuan, Cui Yujun, Li Yansheng, Hou Qingye, Yu Tao. 2012. Characteristics of selenium cycle in the southern Songnen Plain of Heilongjiang Province[J]. Geosience, 26(5): 850-859(in Chinese with English abstract).
Xiu Jinliu, Ke Yang, Fei Guo, Shi Qitang, Ying Hanliu, Li Zhang, Cheng Hangxin, Fei Liu. 2022. Effects and mechanism of igneous rock on selenium in the tropical soil-rice system in Hainan Province, South China[J]. China Geology, 5, 1-11. doi: 10.31035/cg2021038.
Zeng Zhaohua, Zeng Xueping, Liao Suping. 2002. Study on the correlation between cancer and chemical elements in soil environment in China[J]. Jiangsu Environmental Science and Technology, 15(2): 13-15(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNDZ200102004.htm
Zeng Zhaohua, Zeng Xueping. 2001. Research on the correlation between liver cancer in China and chemical elements in soil environment[J]. Jiangsu Environmental Science and Technology, 14(3): 3-4(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZJDZ200102008.htm
Zeng Zhaohua, Zeng Xueping. 2001. Research on the correlation between colorectal cancer in China and chemical elements in soil environment[J]. Zhejiang Geology, 17(2): 55-58(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZJDZ200102008.htm
Zhai Furong, Liang Shuai, Dai Huimin. 2020. Prospects of geochemical investigation of Black Soil in Northeast China[J]. Geology and Resources, 29 (6): 503-509, 532(in Chinese with English abstract).
Zhao Jun, Zhang Zhehuan, Mu Huayi, Wang Xin, Liang Shuai. 2021. Study on selenium in soil and crops in the high incidence areas of Keshan disease[J]. Northwestern Geology, 54(4): 250-258(in Chinese with English abstract).
Zhao Yan, Luan Wenlou, Guo Haiquan, Cai Kui, Ma Zhongshe, Dun Yanran. 2021. Characteristics, causes and ecological environment health evaluation of selenium-enriched soil in Gaocheng district of Shijiazhuang City, Hebei Province[J]. Geology in China, 48(3): 764-776(in Chinese with English abstract).
白志鹏, 贾纯荣, 王宗爽, 朱坦. 2002. 人体对室内外空气污染物的暴露量与潜在剂量的关系[J]. 环境与健康杂志, 19(6): 425-428. doi: 10.3969/j.issn.1001-5914.2002.06.003 程伯容, 鞠山见, 岳淑熔, 赫荣臻, 盛士骏. 1980. 我国东北地区土壤中的硒[J]. 土壤学报, 17(1): 55-61. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB198001005.htm 迟凤琴, 徐强, 匡恩俊, 张久明, 魏丹, 宿庆瑞, 韩锦泽. 2016. 黑龙江省土壤硒分布及其影响因素研究[J]. 土壤学报, 53(5): 1262-1274. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201605017.htm 戴慧敏, 宫传东, 董北, 刘驰, 孙淑梅, 郑春颖. 2015. 东北平原土壤硒分布特征及影响因素[J]. 土壤学报, 52(6): 1356-1364. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201506015.htm 黑龙江省地矿局第一水文地质工程地质大队, 地矿部水文指挥部904水文于质工程地质大队. 1990. 黑龙江省第四纪地质及环境[M]. 北京: 海洋出版社. 胡省英, 冉韦彦, 范宏瑞. 2003. 土壤-作物系统中重金属元素的地球化学行为[J]. 地质与勘探, 39(5): 84-87. doi: 10.3969/j.issn.0495-5331.2003.05.019 李海华, 刘建武, 李树人, 申灿杰, 贾冀梅, 张玉法, 丁彤旗. 2000. 土壤-植物系统中重金属污染及作物富集研究进展[J]. 河南农业大学学报, 34(1): 30-34. doi: 10.3969/j.issn.1000-2340.2000.01.008 李婷, 吴明辉, 王越, 杨化菊, 唐春东, 段昌群. 2020. 人类扰动对重金属元素的生物地球化学过程的影响与修复研究进展[J]. 生态学报, 40(13): 4679-4688. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202013042.htm 梁刚, 刘漩, 何慧, 刘新会. 2012. 新民城市居民头发重金属含量测定及相关分析[J]. 环境科学与技术, 35 (10) : 112-115. doi: 10.3969/j.issn.1003-6504.2012.10.024 梁帅, 朱建新, 戴慧敏, 宋运红, 刘凯, 韩晓萌, 翟富荣. 2021. 黑龙江拜泉地区硒元素在土壤-植物系统中的迁移富集规律[J]. 地质与资源, 30(4): 456-464, 478. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD202104007.htm 廖自基. 1989. 环境中微量金属元素的污染危害与迁移转化[M]. 北京: 科学出版社, 26-28. 林克惠, 赵平, 祖艳群. 2009. 微量元素对作物和人体的毒害作用及其控制[J]. 云南农业大学学报, 17(1): 94-98. doi: 10.3969/j.issn.1004-390X.2009.01.019 刘发欣. 2007. 区域土壤及农产品中重金属的人体健康风险评估[D]. 雅安: 四川农业大学. 刘红, 马燕明, 何忠义, 夏坚. 2000. 人发微量元素特征与地球化学环境的关系[J]. 华东交通大学学报, 17(3): 63-67. doi: 10.3969/j.issn.1005-0523.2000.03.015 马建华, 马诗院, 陈云增. 2014. 河南某污灌区土壤-作物-人发系统重金属迁移与积累[J]. 环境科学学报, 34(6): 1517-1526. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201406022.htm 朴河春, 刘广深. 1995. 我国特定的季风气候导致缺硒带形成的初步论据[J]. 地质地球化学, (6): 40-43. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ199506008.htm 秦海波, 朱建明, 朱咏喧, 雷磊. 2009. 大气环境中硒的存在形式、来源及通量[J]. 地球与环境, 37(3): 304-314. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200903018.htm 秦俊法, 李增禧, 梁东东. 2003. 头发微量元素分析与疾病诊断[M]. 郑州: 郑州大学出版社. 谭见安, 侯少范, 朱文. 1998. 我国低硒带和克山病、大骨节病病因研究[J]. 中国科学院院刊, (1): 54-60. doi: 10.3969/j.issn.1000-3045.1998.01.013 王子健, 赵利华, 彭安. 1989. 低硒带土壤中硒的挥发过程研究[J]. 环境化学, 8(2): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX198902001.htm 魏振山, 涂其军, 唐蜀虹, 王化兵, 赵雪娇, 白金启. 2016. 天山北坡乌鲁木齐至沙湾地区富硒土壤地球化学特征及成因探讨[J]. 物探与化探, 40(5): 893-898. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201605008.htm 夏学齐, 杨忠芳, 薛圆, 崔玉军, 李延生, 侯青叶, 余涛. 2012. 黑龙江省松嫩平原南部土壤硒元素循环特征[J]. 现代地质, 26(5): 850-859. doi: 10.3969/j.issn.1000-8527.2012.05.002 曾昭华, 曾雪萍, 廖苏平. 2002. 中国癌症与土壤环境中化学元素的相关性研究[J]. 江苏环境科技, 15(2): 13-15. doi: 10.3969/j.issn.1674-4829.2002.02.007 曾昭华, 曾雪萍. 2001. 中国大肠癌与土壤环境中化学元素的相关性研究[J]. 浙江地质, 17(2): 55-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJDZ200102008.htm 曾昭华, 曾雪萍. 2001. 中国肝癌与土壤环境中化学元素的相关性研究[J]. 江苏环境科技, 14(3) : 3-4. doi: 10.3969/j.issn.1674-4829.2001.03.002 翟富荣, 梁帅, 戴慧敏. 2020. 东北黑土地地球化学调查研究进展与展望[J]. 地质与资源, 29 (6): 503-509, 532. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD202006001.htm 赵君, 张哲寰, 穆华一, 王鑫, 梁帅. 2021. 克山病高发区土壤-农作物硒元素特征研究[J]. 西北地质, 54(4): 250-258. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI202104021.htm 赵燕, 栾文楼, 郭海全, 蔡奎, 马忠社, 敦妍冉. 2021. 河北省石家庄市藁城区富硒土壤特征、成因与生态环境健康评价[J]. 中国地质, 48(3): 764-776. http://geochina.cgs.gov.cn/geochina/article/abstract/20210307?st=search 中国环境监测总站. 1990. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社. -
期刊类型引用(7)
1. 梁帅,戴慧敏,翟富荣,郭常来,高铁,刘凯,魏明辉,张哲寰,杜贯新. 兴凯湖西部土壤-植物系统中硒含量特征、成因来源及迁移转化主控因素. 地质通报. 2024(01): 163-172 . 百度学术
2. 杨柳,唐振,施璐. 科尔沁沙地西北缘生态地质环境评价. 地质与资源. 2024(01): 98-105 . 百度学术
3. 赵建,孔繁鹏,刘洪博,何金宝,吕祥熙. 黑龙江省宝清县万金山乡土壤硒分布特征及其与土壤性质关系. 地质与资源. 2023(02): 233-237+210 . 百度学术
4. 姜冰,邢孟涵,孙增兵,杨丽原. 弥河流域土壤中钴、钼、硒、锌空间分布及来源分析. 科学技术与工程. 2023(35): 15312-15318 . 百度学术
5. 禹惠敏,王冬艳,王兴佳,商屹. 东北水稻产区土壤-作物系统锌元素生态地球化学特征. 世界地质. 2022(01): 217-226 . 百度学术
6. 杨朝莲,张清海,卢勤辉,程建中,罗国飞,李大栓. 贵州喀斯特高地质背景区农产品Cd、Cu、Zn、Se、F含量特征及膳食暴露风险. 食品安全质量检测学报. 2022(15): 5008-5016 . 百度学术
7. 付宇佳,谭昌海,刘晓煌,孙兴丽,袁泽民,郑艺文. 自然资源定义、分类,观测监测及其在国土规划治理中的应用. 中国地质. 2022(04): 1048-1063 . 本站查看
其他类型引用(2)