Zircon U-Pb ages and Hf isotopic compostions of Sugensala pluton in the western Junggar: Constraints on the tectonic evolution
-
摘要:研究目的
为了进一步了解西准噶尔地区构造演化。
研究方法对西准谢米斯台西段苏根萨拉岩体的花岗岩进行了LA-ICP-MS锆石U-Pb年龄和Hf同位素测试。
研究结果定年结果呈现出2期年龄:一期集中在440~450 Ma,第二期集中在410~420 Ma,根据锆石CL图像特征,认为(444.2±2.2) Ma(MSWD=0.99)代表了捕获锆石的年龄,(415.6±1.1)Ma代表了岩体的结晶年龄,为晚志留世,指示博什库尔—成吉斯岩浆弧至少在晚志留世就开始了广泛的岩浆活动。锆石的εHf(t)值变化范围为+8.6~+13.2,加权平均值为10.8±1.4,显示其原岩来源于地幔物质,其一阶段Hf模式年龄TDM1为521~742 Ma,两阶段模式年龄TDM2变化于565~858 Ma,本区花岗岩是亏损地幔物质上升到地壳,并在此停留一段时间后的熔融产物,其来源于年轻的地壳物质,表明花岗岩类的源岩为新生地壳物质的部分熔融,加入到大陆地壳中的新生组分可能主要为来自亏损地幔的玄武质岩浆。
结论推测准噶尔盆地可能是以新元古代晚期至早古生代早期,由亏损地幔演化而来的洋壳和岛弧建造组成的年轻地壳为主。这为进一步认识西准噶尔博什库尔—成吉斯岩浆弧的性质及构造演化提供了证据。
创新点:获得了精确的锆石U-Pb年龄和Hf同位素测试结果;探讨了准噶尔盆地的物质组成及大地构造演化的关系。
Abstract:This paper is the result of geological survey engineering.
ObjectiveIn order to further understand the tectonic evolution of the West Junggar region.
MethodsIn this paper, the zircon UPb geochronology and Hf isotopes of Sugensala granites were carried out.
ResultsThe dating results show two stages of age. The first phase focused on 440-440 Ma and the second phase is concentrated in the 410-420 Ma. According to the characteristics of the zircon CL images, we consider a capture zircon age of (444.2±2.2) Ma and a crystallization zircon age of (415.6±1.1) Ma. It is implied there was a wide range of magmatic activity at least on late- Silurian in Boshchekul—Chingiz magmatic arc. The εHf(t) values of the zircon range of 8.6-13.2, with a weighted average of 10.8±1.4, indicating that its original rock is derived from mantle materials. The one-stage Hf model ages (TDM1) are 521-742 Ma and two-stage Hf model ages (TDM2) are 565-858 Ma. The granite was derived from the younger crustal materials from partial melting of the depleted mantle which raised to crust and stayed for a period of time. It shows that the source rocks of granites were generated from partial melting of new crustal material. The new components of continental crust may mainly come from depleted mantle-derived basaltic magma.
ConclusionsWe speculate that Junggar basin is composed of young crust which evolved from depleted mantle in the period of late Neoproterozoic to Early Paleozoic. It is helpful to the further understanding the nature and tectonic evolution for Boshchekul-Chingiz magmatic arc.
-
1. 引言
新疆西准噶尔是中亚古生代俯冲-增生复合造山带的主要组成部分(韩宝福等, 1998, 1999;Jahn et al., 2000, 2004;Xiao et al., 2004; 徐学义等, 2014),主要由一系列增生杂岩带、古生代岩浆弧构成(Windley et al., 2002;Chen and Jahn, 2004;韩宝福等,2006;肖文交等, 2006;童英等, 2010)。根据物质组成及构造属性划分为北带和南带,其中北带主要以近EW向展布的古生代沉积-火山碎屑岩系及火山弧为特征,与南带的增生杂岩带大致以谢米斯台山南缘断裂为界(Chen et al., 2010)。主要构造单元有早古生代博什库尔—成吉斯岩浆弧和晚古生代扎尔玛萨吾尔岩浆弧,二者之间以库吉拜—和布克赛尔—洪古勒楞蛇绿岩带为界。其中位于南侧的博什库尔—成吉斯岩浆弧沿着塔尔巴哈台山南麓呈近东西向展布,经谢米斯台山和赛尔山一直延伸到沙尔布尔提山地区(郭召杰, 2012; Tang et al., 2020; Wu et al., 2022)。
对于博什库尔—成吉斯岩浆弧的岛弧建造时代被认为是早古生代,Chen et al.(2010)认为其形成时代为晚志留世—早泥盆世,近年来陆续发现了晚志留世与洋壳俯冲有关的流纹岩和早泥盆世埃达克岩(孟磊等,2010;王金荣等,2013;韩乐乐等,2019),该弧中早石炭世岛弧火山岩的发现,指示该火山弧岩浆活动一直持续到早石炭世,或者更晚。谢米斯台地区主体为博什库尔—成吉斯早古生代岩浆弧向东的延伸部分,同时又复合有少量扎尔玛—萨吾尔晚古生代岩浆弧(王京彬和徐新, 2006)。近几年,谢米斯台山中段、东段岩浆岩年代学和地球化学的方面做了一定研究,揭示了古生代岩浆作用在谢米斯台山的广泛存在(杨钢等,2015;纵瑞文和龚一鸣,2019)。本文以谢米斯台地区苏根萨拉岩体为研究对象,通过LA-ICPMS锆石U-Pb同位素定年和地球化学、Hf同位素分析,结合区域资料综合研究,为进一步认识博什库尔—成吉斯岩浆弧的构造演化提供依据,对于西准噶尔北部构造岩浆演化研究具有非常重要的意义。
2. 地质背景
西准噶尔位于哈萨克斯坦板块、塔里木板块和西伯利亚板块交汇的中亚增生造山带关键部位,其岩浆活动十分发育,时代从早古生代延续到晚古生代,岩石类型从超基性到酸性均有分布,且大多数岩浆岩是晚古生代岩浆活动的产物(靳松等, 2015, 2016)。区内的花岗岩体主要呈岩基状、岩株状侵位于古生代的地层中,侵入体规模不一,既有岩基和岩株,也有岩枝。
西准谢米斯台地区断裂构造发育,主要为和布克赛尔北东向哈拉也门断裂和谢米斯台南部的北东东—南西西向伊尼萨拉断裂,次级断裂发育,有近EW向、NE向和NW向断裂。近EW向断裂与地层走向大致平行,NE、NW向断裂斜切地层。本研究区的花岗岩体位于谢米斯台山西段(图 1),该区域广泛出露中酸性火山岩和侵入岩。根据1∶25万区调资料,名为苏根萨拉岩体,整体呈东西向展布,出露面积约为100 km2,属于岩基,岩体内部均为发育较多的暗色细粒中基性包体,包体呈近椭圆状,大小为1~20 cm,围岩有轻微的变质,角岩化现象普遍。岩体侵位于一套火山岩及火山碎屑岩,包括集块岩、安山岩、流纹斑岩、英安岩、凝灰岩、安山质熔结凝灰岩等。对于其形成时代,前人认为该地层的形成时代为中泥盆世,随着测试技术的进步,近几年研究的新进展认为该地层时代为志留纪(Chen et al., 2010;Shen et al., 2012;Zhang et al., 2015)。
图 1 研究区地质背景图a—中亚造山带及研究区位置图;b—西准谢米斯台地区苏根萨拉岩体分布示意图(改自Shen et al., 2012)Figure 1. Geological map of the study areaa-The location map of central Asian orogenic belt and study area; b-Distribution of Sugensala granitoids in the Xiemisitai area, west Juggar (modified from Shen et al., 2012)3. 岩相学特征
岩石为中粗粒含钠铁闪石花岗岩,与志留纪火山岩为侵入接触关系。岩石由钾长石65%±、斜长石5%±、石英20%~25%、钠铁闪石5%~10%等矿物组成(图 2)。
图 2 苏根萨拉岩体岩相学显微照片a—晚志留世花岗岩手标本照片; b—晚志留世花岗岩具中细粒花岗结构; c—晚志留世花岗岩钾长石与石英的文象交生体; d—晚志留世花岗岩钾长石粒内的斜长石包体; e—晚志留世花岗岩钠铁闪石; f—晚志留世花岗岩钠铁闪石Figure 2. Petrography microphotographs of Sugensala plutona-Hand specimens photo of Late Silurian granite; b-Medium-fine grained granitoid texture of Late Silurian granite; c-Bunshox intergrowth body between K-feldspar and quartz of Late Silurian granite; d-Plagioclase xenoliths in K-feldspar of Late Silurian granite; e-Arfvedsonite in Late Silurian granite; f-Arfvedsonite in Late Silurian granite钾长石:主要为正条纹长石,半自形板状,杂乱分布,粒度一般5~10 mm,部分为2~5 mm,极少0.3~ 2 mm,具高岭土化,有的粒内见斜长石包体,简单双晶常见,局部与石英呈文象状交生,少见交代斜长石。
斜长石:半自形板状,零星分布,粒度一般0.3~ 2mm,轻黏土化,常见被钾长石补片状、条纹状交代,聚片双晶少见,根据⊥(010)晶带的最大消光角法测得NP′∧(010)=13,斜长石牌号An=28,属于更长石。
石英:他形粒状,杂乱分布,粒度部分2~4.2 mm,部分0.2~2 mm,粒内具波状、带状消光,局部与钾长石文象状交生。
钠铁闪石:半自形柱粒状,主相对集合呈堆状分布,少零星分布,粒度一般0.2~2 mm,部分2~5 mm,少部分5~6 mm,多色性明显:Ng′=绿黄色,Np′=深蓝绿色。
4. 分析方法
全岩主量元素微量元素在自然资源部天津地质调查中心完成,采用可见分光光度计和原子吸收分光光度计测定,分析精度优于5%。微量元素采用等离子质谱仪(ICP-MS)测定,分析精度优于5%。
锆石U-Pb定年在中国地质调查局天津地质调查中心利用LA-ICP-MS完成。所用等离子体质谱仪为Thermo Fisher公司制造的Neptune,采用193nm激光器对锆石进行剥蚀,斑束直径为35 μm,采用He作为剥蚀物质的载气,锆石TEMORA作为年龄外标,元素含量用NIST612作为外标标定。锆石测定点的Pb同位素比值、U-Pb表面年龄和U-Th-Pb含量采用ICPMSDataCal程序和Isoplot程序进行数据处理,采用208Pb校正法对普通铅进行校正(李怀坤等, 2009)。
锆石原位Hf同位素测试在中国科学院地质与地球物理研究所Neptune多接收器电感耦合等离子体质谱仪(MC-ICP-MS)和193 nm激光取样系统上进行,分析时激光束直径为63 um,激光剥蚀时间约26 s。测定时用锆石国际标样91500作外标,分析中所用的激光脉冲速率为6 Hz,激光束脉冲能量为100 mJ。仪器的运行条件及详细的分析过程可参见Wu et al.(2006)。本次实验测定过程中,91500的测定结果是0.28325±6,该值与目前用溶液法获得的值在误差范围内一致(Goolaerts et al., 2004; Woodhead et al., 2004),亏损地幔Hf模式年龄(TDM)计算采用现今亏损地幔值176Hf/177Hf = 0.28325和176Lu/177Hf = 0.0384。
5. 分析结果
5.1 锆石U-Pb年龄
根据锆石的CL图像特征及Th/U比值,将样品中的锆石分为2类:
第一类锆石为捕获锆石,浑圆形或呈短柱状(图 3a);第二类锆石为岩浆锆石,锆石颜色为无色、浅褐色,短柱状—长柱状,长宽比介于1∶1到2∶1,个别可达3∶1(图 3b)。从CL图像上看,所有锆石均具有致密的振荡环带,表现出岩浆成因的特点。
含钠铁闪石花岗岩N2861锆石LA-ICP-MS测试数据如表 1所示,可以看出,样品的25个测试数据中,Th含量变化范围为56×10-6~1104×10-6,U含量为193×10-6~1380×10-6,Th/U比值变化范围为0.32~1.05,个别点为0.06。岩浆锆石,Th/U比值较大,元素含量较高;变质锆石Th/U比值小,元素含量也较小。样品N2861具有较高的Th/U比值,表明其为岩浆成因锆石。
表 1 晚志留世花岗岩LA-ICP-MS锆石U-Pb同位素测定结果(样号N2861)Table 1. The results of LA-ICP-MS zircon U-Pb isotope dating of Late Silurian granites (sample N2861)在锆石U-Pb谐和图中,数据投影点落于谐和线上且集中分布(图 4a),206Pb/238U年龄加权平均值分为2期:一期集中在440~450 Ma,第二期集中在410~420 Ma,在206Pb/238U年龄段概率密度及优选直方图中,也可以看出有2期年龄的峰值(图 4b)。分别对这2期年龄的峰值进行加权平均(图 4c、d、e、f),给出了(444.2±2.2)Ma(MSWD=0.99)的年龄和(415.6±1.1)Ma(MSWD=0.68)的年龄,根据锆石CL图像特征,认为440~450 Ma年龄代表了捕获锆石的年龄,(415.6±1.1) Ma代表了岩体的结晶年龄,为晚志留世。
图 4 苏根萨拉岩体锆石年代学a—U-Pb年龄谐和图;b—年龄分布频数图;c—捕获锆石U-Pb年龄谐和图;d—捕获锆石年龄加权平均年龄图;e—岩浆锆石U-Pb年龄谐和图;f—岩浆锆石年龄加权平均年龄图Figure 4. Zircon geochronology of of Sugensala plutona-U-Pb age concordia diagram; b-Distribution frequency diagram; c-U-Pb age concordia diagram of captured zircons; d-Weighted average age diagram of captured zircons; e-U-Pb age concordia diagram of magmatic zircons; f-Weighted average age diagram of magmatic zircons5.2 Hf同位素特征
晚志留世侵入岩同位素样(N2861、表 2),7颗锆石Hf同位素176Yb/177Hf和176Lu/177Hf比值范围分别为0.176373~0.449411和0.002958~0.006551,可能由于仪器校正等原因,176Yb/177Hf比值略高。以t=416 Ma计算出锆石176Hf/177Hf初始值介于0.282678~ 0.282876,176Hf/177Hf比值较为集中,介于0.282797~0.282925,εHf(t)值介于+8.6~+13.2,加权平均值分别为0.282855±0.000040和10.8±1.4(图 5a,b),一阶段模式年龄TDM1变化于521~742 Ma,两阶段模式年龄TDM2变化于565~858Ma(图 5c)。
表 2 晚志留世花岗岩锆石Lu-Hf同位素组成(样号N2861)Table 2. Lu-Hf isotopic compositions of zircons in Late Silurian granites (sample N2861)6. 讨论
6.1 岩石成因及基底属性
源区性质与基底属性对决定岩浆岩的种类、成因、机制有很大的影响,因此了解并熟悉该地区花岗岩的源区与基底属性非常有必要。在晚志留世锆石U-Pb年龄与εHf(t)关系图解中(图 5d),其εHf(t)值落入亏损地幔线上下,全部εHf(t)值均为正值,正的εHf(t)值暗示花岗岩的源区具有亏损地幔的特征,假设幔源基性岩浆直接分异成花岗岩,那么巨量基性岩可能出露于花岗岩周边。但实际中,很难发现这些超基性—基性岩,基性岩浆底侵作用是否存在也不能够忽视(苏玉平等,2006)。因此,推测本区花岗岩是亏损地幔物质上升到地壳,并在此停留一段时间后的熔融产物,其来源于年轻的地壳物质,表明花岗岩类的源岩为新生地壳物质的部分熔融,加入到大陆地壳中的新生组分可能主要为来自亏损地幔的玄武质岩浆。这一成岩模式得到了花岗岩年轻的同位素年龄(两阶段模式年龄565~858 Ma)的支持。年轻亏损地幔模式年龄和花岗岩高εHf(t)值指示:准噶尔盆地可能是以新元古代晚期至早古生代早期,由亏损地幔演化而来的洋壳和岛弧建造组成的年轻地壳为主。
大部分学者认为准噶尔的基底非常年轻,可能是残余的洋壳与岛弧的复合体(Chen and Arakawa, 2005;Shen et al., 2012)。西准噶尔地区的埃达克岩、花岗岩及富镁闪长岩都具有正的εNd(t)值,低的Sr同位素初始值以及年轻的Nd模式年龄,这些都表明西准噶尔地区没有古老的大陆地壳,源区由相对年轻的物质组成(徐盛林等,2019)。
6.2 时代
前人对西准噶尔地区花岗岩体所获得的SHRIMP和LA-ICP-MS锆石U-Pb年龄进行了统计,童英等(2010)将该区岩浆岩形成时代划分为2期,即早石炭世(340~320 Ma)和晚石炭世—早二叠世(310~290 Ma),以后者作用较强。谢米斯台地区晚志留世—早泥盆世(422~405 Ma)花岗岩年龄的发表(Chen et al., 2010),将岩体形成时代归纳为3个阶段:晚志留世—早泥盆世422~405 Ma、早石炭世346~321 Ma和晚石炭世—晚二叠世304~263 Ma。本文获得了该区早志留世的花岗岩的年龄信息(442.2 Ma)。王京彬和徐新等(2006)研究显示志留纪西准噶尔地区存在广泛的洋盆和岛弧背景的岩浆岩。在谢米斯台地区还广泛发育了志留世侵入的中酸性岩浆作用(Chen et al., 2010)和志留系火山岩(Shen et al., 2012)。
博什库尔——成吉斯岩浆弧主要由中奥陶世—早泥盆世火山岩、火山碎屑沉积岩构成,并出露晚志留—早泥盆世中基性侵入岩,有学者推测其岛弧建造发生在晚志留世—早泥盆世。孙勇等(2015)获得了沙尔布尔组辉石安山岩U-Pb锆石年龄为(428.7±2.7) Ma,将该岛弧建造可能至少提前至中志留世。另外,该弧中发现了晚志留世与洋壳俯冲作用有关而形成的火山岩(孟磊等, 2010),同时还有早泥盆世具埃达克岩性质的阿克乔克岩体(王金荣等, 2013),期间出现一系列与俯冲板片有关的岩石组合,说明博什库尔——成吉斯岩浆弧此时可能存在年轻的热洋壳俯冲作用。杨维等(2015)根据测谢米斯台组年龄具有中部老、两侧新的特点(中部年龄为(436±11) Ma、(428±6) Ma;北部年龄为(422±6) Ma;南部年龄为(429±5) Ma),认为志留纪谢米斯台岛弧两侧洋盆应存在双向俯冲。本文LA-ICP-MS锆石U-Pb定年结果分为2期:第一期集中在440~450 Ma,第二期集中在410~420 Ma,根据锆石CL图像特征,认为(444.2±2.2) Ma(MSWD= 0.99)代表了捕获锆石的年龄,(415.6±1.1) Ma代表了岩体的结晶年龄,为晚志留世,指示博什库尔—成吉斯岩浆弧至少在晚志留世就开始了广泛的岩浆活动。
7. 结论
(1)谢米斯台地区苏根萨拉岩体440~450 Ma年龄的信息代表了捕获锆石的年龄,(415.6±1.1) Ma代表了岩体的结晶年龄,为晚志留世,指示博什库尔—成吉斯岩浆弧至少在晚志留世就开始了广泛的岩浆活动。
(2)本区花岗岩是亏损地幔物质上升到地壳,并在此停留一段时间后的熔融产物,其来源于年轻的地壳物质,表明花岗岩类的源岩为新生地壳物质的部分熔融,加入到大陆地壳中的新生组分可能主要为来自亏损地幔的玄武质岩浆。
致谢: 中国地质大学钟增球教授对本文提出了宝贵的意见,锆石测年及数据处理在天津地质调查中心耿建珍的帮助下完成;Hf同位素测试在中国科学院地质与地球物理研究所王浩博士的帮助下完成,在此对他们的热心帮助和辛勤付出表示由衷感谢。 -
图 1 研究区地质背景图
a—中亚造山带及研究区位置图;b—西准谢米斯台地区苏根萨拉岩体分布示意图(改自Shen et al., 2012)
Figure 1. Geological map of the study area
a-The location map of central Asian orogenic belt and study area; b-Distribution of Sugensala granitoids in the Xiemisitai area, west Juggar (modified from Shen et al., 2012)
图 2 苏根萨拉岩体岩相学显微照片
a—晚志留世花岗岩手标本照片; b—晚志留世花岗岩具中细粒花岗结构; c—晚志留世花岗岩钾长石与石英的文象交生体; d—晚志留世花岗岩钾长石粒内的斜长石包体; e—晚志留世花岗岩钠铁闪石; f—晚志留世花岗岩钠铁闪石
Figure 2. Petrography microphotographs of Sugensala pluton
a-Hand specimens photo of Late Silurian granite; b-Medium-fine grained granitoid texture of Late Silurian granite; c-Bunshox intergrowth body between K-feldspar and quartz of Late Silurian granite; d-Plagioclase xenoliths in K-feldspar of Late Silurian granite; e-Arfvedsonite in Late Silurian granite; f-Arfvedsonite in Late Silurian granite
图 4 苏根萨拉岩体锆石年代学
a—U-Pb年龄谐和图;b—年龄分布频数图;c—捕获锆石U-Pb年龄谐和图;d—捕获锆石年龄加权平均年龄图;e—岩浆锆石U-Pb年龄谐和图;f—岩浆锆石年龄加权平均年龄图
Figure 4. Zircon geochronology of of Sugensala pluton
a-U-Pb age concordia diagram; b-Distribution frequency diagram; c-U-Pb age concordia diagram of captured zircons; d-Weighted average age diagram of captured zircons; e-U-Pb age concordia diagram of magmatic zircons; f-Weighted average age diagram of magmatic zircons
表 1 晚志留世花岗岩LA-ICP-MS锆石U-Pb同位素测定结果(样号N2861)
Table 1 The results of LA-ICP-MS zircon U-Pb isotope dating of Late Silurian granites (sample N2861)
表 2 晚志留世花岗岩锆石Lu-Hf同位素组成(样号N2861)
Table 2 Lu-Hf isotopic compositions of zircons in Late Silurian granites (sample N2861)
-
Chen B, Arakawa Y. 2005. Elemental and Nd-Sr isotopic geochemistry of granitoids from the West Junggar foldbelt (NW China), with implications for Phanerozoic continental growth[J]. Geochimica et Cosmochimica Acta, 69(5): 1307-1320. doi: 10.1016/j.gca.2004.09.019
Chen B, Jahn B M. 2004. Genesis of post-collisional granitoids and basement nature of the Junggar Terrane, NW China: Nd-Sr isotope and trace element evidence[J]. Journal of Asian Earth Sciences, 3: 691-703.
Chen J F, Han B F, Ji J Q, Zhang L, Xu Z, He G Q, Wang T. 2010. Zircon U-Pb ages and tectonic implications of Paleozoic plutons in northern West Junggar, North Xinjiang, China[J]. Lithos, 115(1): 137-152.
Goolaerts A, Mattielli N, de Jong J, Weis D, Scoates J S. 2004. Hf and Lu isotopic reference values for the zircon standard 91500 by MC-ICP-MS[J]. Chemical Geology, 206: 1-9. doi: 10.1016/j.chemgeo.2004.01.008
Guo Zhaojie. 2012. A review on the Paleozoic tectonic evolution of northern Xinjiang and a discussion on the important role of geological maps in tectonic study[J]. Geological Bulletin of China, 31(7): 1054-1060(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2012.07.004
Han Baofu, Ji Jianqing, Song Biao, Chen Lihui, Zhang Lei. 2006. Late Paleozoic Vertical Growth of Continental Crust around the Junggar Basin, Xinjiang, China(Part I): Timing of post-collisional plutonism[J]. Acta Petrologica Sinica, 22(5): 1077-1086(in Chinese with English abstract).
Han Baofu, He Guoqi, Wang Shiguang, Hong Dawei. 1998. Postcollisional mantle-derived magmatism and vertical growth of the continental crust in North Xinjiang[J]. Geological Review, 44(4): 396-406 (in Chinese with English abstract).
Han Baofu, He Guoqi, Wang Shiguang. 1999. Postcollisional mantle-derived magmatism, underplating and implications for basement of the Junggar Basin[J]. Science in China (Series D: Earth Sciences), 2: 113-119(in Chinese).
Han Lele, Ding Weicui, Chen Xuanhua, Liu Meiling, Wang Ye, Xu Shenlin, Zhang Da, Cui Yanjun. 2019. Linear structure extraction and quantitative analysis of multi-source remote sensing information in West Junggar Basin[J]. Geology in China, 46(5): 1209-1223(in Chinese with English abstract).
Jahn Bor-ming, Windley Brian, Natal'in Boris, Dobretsov Nick. 2004. Phanerozoic continental growth in Central Asia[J]. Journal of Asian Earth Sciences, 23: 599-603. doi: 10.1016/S1367-9120(03)00124-X
Jahn B M, Wu F Y, Chen B. 2000. Massive granitoid generation in Central Asia: Nd istope evidence and implication for continental growth in the Phanerozoic[J]. Episodes, 22: 82-92.
Jin Song, Zhang Zhaoyi, Rong Guilin, Liu Xinyu, Li Yuehui, Zhang Hanwen, Bi Li. 2015. Geochemical characteristics, zircon U-Pb age, and Hf isotopes of Yushenkala pluton in western Junggar, Xinjiang: Constraint on the closure of Paleo-Asian Ocean[J]. Geology in China, 42(3): 494-508(in Chinese with English abstract).
Jin Song, Zhang Zhaoyi, Rong Guilin, Zeng Wen, Lin Qian, Wu Liang. 2016. Petrogenesis and tectonic implication for Jiaerluafu granitic porphyry pluton in western Junggar, Xinjiang: Constraints from the element and zircon Hf isotope geochemistry[J]. Chinese Journal of Geology, 51(1): 262-280(in Chinese with English abstract).
Li Huaikun, Geng Jianzhen, Hao Shuang, Zhang Yongqing, Li Huiming. 2009. The study of determination zircon U-Pb isotopic age using laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICPMS) [J]. Acta Mineralogica Sinica, S1: 600-601(in Chinese).
Meng Lei, Shen Ping, Shen Yuanchao, Liu Tiebing, Song Guoxue, Dai Huawu, Li Chenkai, Lang Zesong. 2010. Igneous rocks geochemistry, zircon U-Pb age and its geological significance in the central section of Xiemisitai area, Xinjiang[J]. Acta Petrologica Sinica, 26(10): 3047-3056(in Chinese with English abstract).
Shen P, Shen Y C, Li X H, Pan Hongdi, Zhu Heping, Meng Lei, Dai Huawu. 2012. Northwestern Junggar Basin, Xiemisitai Mountains, China: A geochemical and geochronological approach[J]. Lithos, 140: 103-118.
Su Yuping, Tang Hongfeng, Hou Guangshun, Liu Congqiang. 2006. Geochemistry of aluminous A-type granites along Darabut tectonic belt in western Junggar, Xinjiang[J]. Geochimica, 35(1): 55-67(in Chinese with English abstract).
Sun Yong, Li Yongjun, Yang Gaoxue, Yi Shanxin, Zhang Shenglong, Sun Yu, Wang Junnian. 2015. Zircon LA-ICP-MS U-Pb dating and tectonic settings implications of the middle Silurian volcanic rocks in the west of Xiemisitai mountain, west Juggar[J]. Xinjiang Geology, 33(1): 27-32(in Chinese with English abstract).
Tang Hejun, Meng Guixiang, Wang Zhaolin, Deng Zhen, Yan Jiayong, Qi Guang, Xue Ronghui. 2020. Zircon U-Pb geochronology of the newly discovered Kulabiye Cu-Ni sulfide-mineralized gabbroic complex, East Junggar Basin in Xinjiang, China[J]. China Geology, 3(4): 490-492.
Tong Ying, Wang Tao, Hong Dawei, Han Baofu, Zhang Jianjun, Shi Xingjun, Wang Chao. 2010. Spatial and temporal distribution of the Carboniferous-Permian granitoids in northern Xinjiang and its adjacent areas, and its tectonic significance[J]. Acta Petrologica et Mineralogica, 29(6): 619-641(in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2010.06.003
Wang Jingbin, Xu Xin. 2006. Post-collisional tectonic evolution and metallogenesis in Northern Xinjiang, China[J]. Acta Geologica Sinica, 80(1): 23-31(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2006.01.003
Wang Jinrong, Jia Zhilei, Li Taide, Ma Jinlong, Zhao Lei, He Yanbin, Zhang Wei, Liu Kunxin. 2013. Discovery of early Devonian adakite in west Junggar, Xinjiang: Implications for geotectonics and Cu mineralization[J]. Acta Petrologica Sinica, 29(3): 840-852(in Chinese with English abstract).
Windley Brian F, Kröner Alfred, Guo Jinghui, Qu Guosheng, Li Yingyi, Zhang Chi. 2002. Neoproterozoic to Paleozoic geology of the Altai orogen, NW China: New zircon age data and tectonic evolution[J]. Joumal of Geology, 110: 719-737. doi: 10.1086/342866
Woodhead J, Hergt J, Shelley M, Eggins S, Kemp R. 2004. Zircon Hf-isotopic analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation[J]. Chemical Geology, 209: 121-135. doi: 10.1016/j.chemgeo.2004.04.026
Wu Chu, Hong Tao, Xu Xingwang, Wang Chengxi, Dong Lianhui. 2022. A-type granites induced by a breaking-off and delamination of the subducted Junggar oceanic plate, West Junggar, Northwest China[J]. China Geology, 5, 457-474.
Wu Fuyuan, Yang Yueheng, Xie Liewen, Yang Jinhui, Xu Ping. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology[J]. Chemical Geology, 234: 105-126. doi: 10.1016/j.chemgeo.2006.05.003
Xiao W J, Windley B F, Badarch G, Sun S, Li J, Qin K Z, Wang Z. 2004. Palaeozoic accretionary and convergent tectonics of the southern Altaids: Implications fot the growths of Central Asia[J]. Journal of the Geological Society, 161: 339-342. doi: 10.1144/0016-764903-165
Xiao Wenjiao, Han Chunming, Yuan Chao, Chen Hanlin, Sun Ming, Lin Shoufa, Li Zilong, Mao Qigui, Zhang Jien, Sun Shu, Li Jiliang. 2006. Unique Carboniferous-Permian tectonic-metallogenic framework of Northern Xinjiang(NW China): Constraints for the tectonics of the southern Paleoasian Domain[J]. Acta Petrologica Sininca, 22(5): 1062-1076(in Chinese with English abstract).
Xu Shenglin, Chen Xuanhua, Li Tingdong, Ding Weicui, Shi Jianjie, Li Bing, Ma Feizhou. 2019. Time of the ocean-continent transition in West Junggar: Constraints from zircon U-Pb dating and Lu-Hf isotopic composition[J]. Geology in China, 46(5): 1061-1078(in Chinese with English abstract).
Xu Xueyi, Li Rongshe, Chen Junlu, Ma Zhongping, Li Zhipei, Wang Hongliang, Bai Jianke, Tang Zhuo. 2014. New constrains on the Paleozoic tectonic evolution of the northern Xinjiang area[J]. Acta Petrologica Sinica, 30(6): 1521-1534(in Chinese with English abstract).
Yang Gang, Xiao Long, Wang Guocan, Gao Rui, He Xinxing, Yan Shengwu, Yang Wei, Yan Wenbo, Zhou Pei. 2015. Geochronology, geochemistry and zircon Lu-Hf study of granites in western section of Xiemisitai area, western Junggar[J]. Earth Science—Journal of China University of Geosciences, 40(3): 548-562. doi: 10.3799/dqkx.2015.043
Zhang Dayu, Zhou Taofa, Yuan Feng, Deng Yufeng, Xu Chao, Zhang Ruofei, Li Peng, Wang Jinlin. 2015. The discovery on the Early Paleozoic magmatism in the Sawuer area, West Junggaar[J]. Acta Petrologica, 31(2): 415-425.
Yang Wei, Wang Guocan, Zong Ruiwen, Xiao Long, Li Li, Yang Gang. 2015. Determination of Silurian-Devonian arc-basin pattern in western Juggar and its regional tectonic significance[J]. Earth Science—Journal of China University of Geosciences, 40(3): 448-460(in Chinese with English abstract).
Zong Ruiwen, Gong Yiming. 2019. The discovery of the Late Devonian fossils from the Hebukehe Formation and its stratal position in Kelasaileke Mountain, western Junggar, Xinjiang[J]. Geology in China, 46(6): 1259-1269(in Chinese with English abstract).
郭召杰. 2012. 新疆北部大地构造研究中几个问题的评述——兼论地质图在区域构造研究中的重要意义[J]. 地质通报, 31(7): 1054-1060. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201207005.htm 韩宝福, 何国琦, 王式洸, 洪大卫. 1998. 新疆北部碰撞后幔源岩浆活动与陆壳纵向生长[J]. 地质论评, 44(4): 396-406. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP199804008.htm 韩宝福, 何国琦, 王式洸. 1999. 后碰撞幔源岩浆活动、底垫作用及准噶尔盆地基底的性质[J]. 中国科学(D辑), 42(2): 113-119. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199901002.htm 韩宝福, 季建清, 宋彪, 陈立辉, 张磊. 2006. 新疆准噶尔晚古生代陆壳垂向生长(I)——后碰撞深成岩浆活动的时限[J]. 岩石学报, 22(5): 1077-1086. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605003.htm 韩乐乐, 丁伟翠, 陈宣华, 刘美玲, 王叶, 徐盛林, 张达, 崔艳军. 2019. 西准噶尔地区多源遥感信息的线性构造提取与定量分析[J]. 中国地质, 46(5): 1209-1223. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201905022.htm 靳松, 张兆祎, 荣桂林, 刘新宇, 李跃辉, 张瀚文, 毕立. 2015. 新疆西准噶尔玉什喀腊岩体的地球化学特征、锆石U-Pb年龄及Hf同位素: 对古亚洲洋闭合的制约[J]. 中国地质, 42(3): 494-508. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201503008.htm 靳松, 张兆祎, 荣桂林, 曾雯, 林茜, 吴立昂. 2016. 新疆西准噶尔地区加尔路阿甫花岗斑岩岩石成因及地质意义: 元素和锆石Hf同位素地球化学制约[J]. 地质科学, 51(1): 262-280. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202006018.htm 李怀坤, 耿建珍, 郝爽, 张永清, 李惠民. 2009. 用激光烧蚀多接收器等离子体质谱仪(LA-MC-ICPMS)测定锆石U-Pb同位素年龄的研究[J]. 矿物学报, S1: 600-601. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2009S1311.htm 孟磊, 申萍, 沈远超, 刘铁兵, 宋国学, 代华五, 李成凯, 郎泽松. 2010. 新疆谢米斯台中段火山岩岩石地球化学特征、锆石U-Pb年龄及其地质意义[J]. 岩石学报, 26(10): 3047-3056. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201010016.htm 苏玉平, 唐红峰, 侯广顺, 刘丛强. 2006. 新疆西准噶尔达拉布特构造带铝质A型花岗岩的地球化学研究[J]. 地球化学, 35(1): 55-67. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200601006.htm 孙勇, 李永军, 杨高学, 易善鑫, 张胜龙, 孙羽, 王军年. 2015. 西准噶尔谢米斯台山西缘中志留世火山岩LA-ICP-MS锆石U-Pb测年及构造意义[J]. 新疆地质, 33(1): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI201501006.htm 童英, 王涛, 洪大卫, 韩宝福, 张建军, 史兴俊, 王超. 2010. 北疆及邻区石炭—二叠纪花岗岩时空分布特征及其构造意义[J]. 岩石矿物学杂志, 29(6): 619-641. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201006003.htm 王金荣, 贾志磊, 李泰德, 马锦龙, 赵磊, 何彦彬, 张伟, 刘昆鑫. 2013. 新疆西准噶尔发现早泥盆世埃达克岩: 大地构造及成矿意义[J]. 岩石学报, 29(3): 840-852. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201303009.htm 王京彬, 徐新. 2006. 新疆北部后碰撞构造演化[J]. 地质学报, 80(1): 23-31. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200601002.htm 肖文交, 韩春明, 袁超, 陈汉林, 孙敏, 林寿发, 厉子龙, 毛启贵, 张继恩, 孙枢, 李继亮. 2006. 新疆北部石炭纪—二叠纪独特的构造-成矿作用: 对古亚洲洋构造域南部大地构造演化的制约[J]. 岩石学报, 22(5): 1062-1076. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605002.htm 徐盛林, 陈宣华, 李廷栋, 丁伟翠, 史建杰, 李冰, 马飞宙. 2019. 西准噶尔地区洋陆转换时代: 来自锆石U-Pb定年与Lu-Hf同位素的约束[J]. 中国地质, 46(5): 1061-1078. http://geochina.cgs.gov.cn/geochina/article/abstract/20190508?st=search 徐学义, 李荣社, 陈隽璐, 马中平, 李智佩, 王洪亮, 白建科, 唐卓. 2014. 新疆北部古生代构造演化的几点认识[J]. 岩石学报, 30(6): 1521-1534. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201406001.htm 杨钢, 肖龙, 王国灿, 高睿, 贺新星, 鄢圣武, 杨维, 晏文博, 周佩. 2015. 西准噶尔谢米斯台西段花岗岩年代学、地球化学、锆石Lu-Hf同位素特征及大地构造意义[J]. 地球科学——中国地质大学学报, 40(3): 548-562. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201503014.htm 杨维, 王国灿, 纵瑞文, 肖龙, 李理, 杨钢. 2015. 西准噶尔志留纪—泥盆纪弧盆格局的确定及其区域构造演化意义[J]. 地球科学——中国地质大学学报, 40(3): 448-460. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201503007.htm 纵瑞文, 龚一鸣. 2019. 西准噶尔克拉赛勒克山和布克河组晚泥盆世化石的发现及其地层归属[J]. 中国地质, 46(6): 1259-1269. http://geochina.cgs.gov.cn/geochina/article/abstract/20190602?st=search