Abstract:
This paper is the result of hydrogeological survey engineering.
Objective With the improvement of industrialization, the discharge of industrial wastewater containing heavy metals (such as arsenic, copper, chromium, cadmium, nickel, zinc, lead, mercury and manganese) is gradually increasing. Due to its non-biodegradability and long half-life, heavy metals in wastewater cause severe pollution in groundwater, surface water, soil and crops, seriously endangering the health of human beings, animals and plants. Therefore, it is necessary to remove these toxic heavy metals from industrial wastewater.
Methods Based on the current status of heavy metal pollution in industrial wastewater, the current status and progress of heavy metal treatment in industrial wastewater are analyzed by comprehensively considering removal efficiency, treatment cost, sludge output, recyclability and other factors.
Results This paper presents the research of leading technologies on heavy metals removal from industrial wastewater. The internal mechanism, influencing factors (pH, temperature and heavy metal concentration) and the advantages and disadvantages of each technology are summarized. The development trend of heavy metal removal technology in industrial wastewater is proposed to provide a meaningful reference for the comprehensive treatment of industrial wastewater.
Conclusions Various heavy metal removal technologies have broad prospects for heavy metal treatment with some drawbacks. Conventional physical and chemical methods have problems such as high sludge production, low removal efficiency and high energy consumption. In contrast, biological methods strongly depend on pH and temperature and the high demand for energy and maintenance. The combined process is a feasible method to improve the removal efficiency of heavy metals. Research and development of new natural adsorbents, membrane technology and biotechnology, and strengthening the comprehensive application of various technologies are effective ways to remove heavy metals from industrial wastewater.