高级检索

    新疆天山1990—2050年生态系统服务功能及安全格局

    Ecosystem service function and security pattern of Tianshan Mountains in Xinjiang from 1990 to 2050

    • 摘要:
      研究目的 在全球气候变化和人类活动不断扩展的背景下,自然生态系统及其提供的服务功能面临着日益严重的威胁和衰退。为应对这一挑战,确定并保护对生态可持续性具有重大价值的关键地点变得至关重要。生态安全格局是指一种全面策略和方法,旨在保障区域生态可持续性。
      研究方法 本研究基于In−VEST模型、PLUS模型和电路理论等,对西北干旱区天山地区生态系统服务与生态安全格局(ESP)的动态变化进行了评价。
      研究结果 1990—2050年土地利用/覆盖变化(LUCC)空间分布上基本稳定。近30年来总转换面积为32.52×103 km2,主要是荒地和草地之间的转化。与2020年相比,2050年自然增长(ND)、生态保护(EP)和城市发展(UD)情景下的土地总转换面积分别为21.43×103 km2、23.09×103 km2、22.87×103 km2,其中林地面积净增加的最多,主要由草地转化而成。EP情景下林地、草地和水体面积增加。其他两种情景下建设用地和耕地面积大幅扩大。与ND和UD情景相比,EP情景的生态系统服务功能更大。1990—2050年天山地区ESP存在明显的空间差异,较大的生态源和较小的阻力廊道主要分布在天山地区生态系统服务功能较高的中部和北部。相反,破碎的生态源和较大的抗性廊道大多分布在被沙地、裸地或山地阻隔的西部地区。东南部为荒漠地区,没有生态源,缺乏生态廊道。近30年来,生态源区面积减少了1.84×103 km2,呈现破碎化趋势,生态网络更加复杂。与2020年相比,2050年EP情景下的生态源面积和夹点面积分别增加10.53×103 km2和0.11×103 km2,生态障碍带点面积减少0.38×103 km2。除EP场景外,其余两种情景的生态源面积也有所增加,但低于EP场景。
      结论 生态保护情景在塑造LUCC的过程中起到了重要的作用,对维护生态安全和生态系统的完整性具有极大的意义。

       

      Abstract:
      This paper is the result of ecological geological survey engineering.
      Objective Under the background of global climate change and the continuous expansion of human activities, natural ecosystems and their service functions are facing increasingly serious threats and recessions.In order to address this challenge, it is critical to identify and protect key sites that are of great value to ecological sustainability. Ecological security pattern refers to a comprehensive strategy and method to ensure regional ecological sustainability.
      Methods Based on the In−VEST model, PLUS model and circuit theory, this study evaluated the dynamic changes of ecosystem services and ecological security pattern (ESP) in the Tianshan Mountains in the arid region of Northwest China.
      Results The spatial distribution of land use type (LUCC) was basically stable from 1990 to 2050. In the past 30 years, the total conversion area was 32.52×103 km2, which was mainly the conversion between wasteland and grassland. Compared with 2020, the total land conversion areas under the scenarios of Natural development scenario (ND), Ecological protection scenario (EP) and Urban development scenario (UD) in 2050 are 21.43×103 km2, 23.09×103 km2 and 22.87×103 km2, respectively. Among them, the net increase of forest land area is the most, which is mainly transformed from grassland. The area of forest land, grassland and water body increased under EP scenario. In the other two scenarios, the area of construction land and cultivated land has expanded significantly. Compared with ND and UD scenarios, the ecosystem service function of EP scenario is greater. There are obvious spatial differences in ESP in the Tianshan Mountains from 1990 to 2050. The larger ecological sources and smaller resistance corridors are mainly distributed in the central and northern parts of the Tianshan Mountains with higher ecosystem service functions. On the contrary, broken ecological sources and large resistance corridors are mostly distributed in the western region blocked by sand, bare land or mountains. The southeast is a desert area, with no ecological source and lack of ecological corridors. In the past 30 years, the area of ecological source area has decreased by 1.84×103 km2, showing a trend of fragmentation, and the ecological network is more complex. Compared with 2020, the area of ecological source and pinch point under EP scenario in 2050 will increase by 10.53×103 km2 and 0.11×103 km2 respectively, and the area of ecological barrier zone will decrease by 0.38×103 km2. In addition to the EP scenario, the ecological source area of the other two scenarios also increased, but lower than the EP scenario.
      Conclusions Ecological protection scenarios play a vital role in shaping LUCC and are of great significance for maintaining ecological security and ecosystem integrity.

       

    /

    返回文章
    返回