高级检索

    断裂系统对现今地应力扰动特征研究—以四川盆地泸州北区深层页岩气为例

    Characteristics of fracture system disturbance on present-day geostress: An example of deep shale gas in the North Luzhou district, Sichuan Basin

    • 摘要:
      研究目的 随着中国页岩气勘探开发进入快速规模上产阶段,埋深3500~4500 m的深层领域成为下一步页岩气勘探的重要接替区块。但深层页岩气地质条件复杂,断裂系统对地应力的扰动严重影响了气田开发效果。
      研究方法 为进一步明确断裂扰动特征,以四川盆地南部泸州北区深层五峰组—龙马溪组页岩气为例,通过对断裂分布范围、开展单井地应力分析基础上,总结了泸州北区地应力场分布特征,明确了断裂对应力扰动规律,建立了断裂对应力扰动要素表及扰动范围分布图。
      研究结果 (1)泸州区块北区断裂发育特征表现为类型多、期次多,形成了以“向斜、斜坡、背斜”为主的构造样式,断裂组合以“对冲向斜式、叠瓦式、背冲背斜式”为主。(2)研究区地应力状态复杂,三向应力值均值为SH(112.7 MPa)>Sv(106.6 MPa)>Sh(98.8 MPa),断裂区应力值相比非断裂区降低5~35 MPa;水平最大主应力方向介于75°~120°,不同井区间的地应力方向存在较大差异。(3)断裂对地应力扰动分析显示,相同走向断裂随着断裂级次的增加,应力扰动范围逐渐增大,II级断裂扰动范围介于1.43~1.85 km;不同走向断裂中NEE—EW走向断裂对应力扰动范围最大,介于0.94~1.85 km。
      结论 基于断裂对应力扰动规律分析,刻画出泸州北区断裂扰动分布图,将研究区划分为断裂区和非断裂区2类,实现开发单元分级评价,并完善了断裂区与非断裂区水平井段布井模式,以期为后续建产区井位部署优化提供指导意见。

       

      Abstract:
      This paper is the result of oil and gas exploration engineering.
      Objective With the rapid expansion of shale gas production in China, deep shale gas reservoirs at burial depths of 3500–4500 m have become critical targets for exploration. However, complex geological conditions and stress disturbances from fracture systems significantly hinder development.
      Methods This study focuses on the Wufeng−Longmaxi Formation in the North Luzhou district of the southern Sichuan Basin. By analyzing the spatial distribution of fractures and conducting single−well geostress evaluations, the characteristics of stress disturbance caused by fractures were clarified. A comprehensive table and distribution map of stress disturbance elements were created.
      Results (1) Fractures in the study area exhibit diverse types and phases, with a tectonic style dominated by "syncline, slope, and anticline slope." The fracture combinations primarily follow a pattern of "syncline, superposition, and anticline backslope". (2) The regional geostress state is complex, with average stress values of SH(112.7 MPa) >Sv(106.6 MPa) >Sh(98.8 MPa). Fractured zones exhibit stress values 5−35 MPa lower than non−fractured zones. The maximum horizontal stress orientation ranges from 75° to 120°, showing significant variability across wells. (3) Fractures influence stress distribution, with stress disturbance increasing alongside fracture levels. The disturbance range of Class II fractures spans 1.43−1.85 km. NEE—EW fractures exhibit the largest disturbance ranges 0.94−1.85 km.
      Conclusions A fracture disturbance distribution map was developed for the North Luzhou district, dividing the area into fracture and non−fracture zones to enable hierarchical evaluation of development units. Optimized layouts for horizontal well sections in fractured and non−fractured zones were proposed, offering guidance for future production.

       

    /

    返回文章
    返回