高级检索

    二氧化碳地质封存地球物理监测技术研究进展与应用展望

    Progress and prospect of geophysical monitoring technology for carbon dioxide geological storage

    • 摘要:
      研究目的 全球升温是当今世界面临的严峻挑战之一,应运而生的二氧化碳地质封存是降碳减排的有效途径,但该过程对储层和盖层都可能带来一系列影响,存在二氧化碳泄露的风险。二氧化碳注入前后储层物性参数的改变为测井、地震、电磁及重力等地球物理监测方法奠定了理论依据。
      研究方法 本文首先概述了二氧化碳地质封存可能面临的风险及相应的地球物理监测方法,接着探讨了各种地球物理监测技术在二氧化碳地质封存领域的研究进展,最后分析了当前地球物理监测技术面临的技术挑战和应用限制,同时也展望了其发展前景。
      研究结果 面对二氧化碳地质封存过程中可能出现的各种地质力学问题,可以针对性地采用各种地球物理监测方法。如地表变形问题,可采用INSAR、微震及时延重力方法;诱发地震问题,可采用微震方法;破坏井筒完整性问题,可采用测井方法。而在追踪二氧化碳羽流运移及潜在泄露情况时,时延重力/地震、微震及电阻率层析成像等多种方法都能够发挥重要作用。地球物理监测技术的研究进展给实际应用带来了很大信心,但技术本身的局限性、数据处理的复杂性以及现场环境制约等因素依然是不容忽视的挑战。随着人工智能的蓬勃发展,地球物理监测技术也迎来了新的发展机遇。此外,综合利用多源信息也将进一步推动地球物理监测技术的创新和发展。
      结论 二氧化碳地质封存是双碳目标为地球物理行业带来的新机遇,大力发展相适应的长期稳定的二氧化碳地质封存监测体系,是地球物理开拓新市场的一个重要应用领域。借助人工智能浪潮、综合运用多种地球物理方法来监测二氧化碳地质封存项目是未来的发展趋势。

       

      Abstract:
      This paper is the result of CCUS(Carbon Capture Utilization and Storage) engineering.
      Objective At present, global warming is one of the most serious challenges in the world. To reduce carbon emissions, carbon dioxide geological storage emerge as an effective way. However, the process may bring a series of impacts on both the reservoir and the cap layer, creating a risk of carbon dioxide leakage. The change of reservoir physical parameters before and after CO2 injection lays a theoretical basis for geophysical monitoring methods such as logging, seismic, electromagnetic and gravity.
      Methods This paper firstly outlines the potential risks of carbon dioxide geological storage and the corresponding geophysical monitoring methods, then discusses the research progress of various geophysical monitoring techniques in the field of carbon dioxide geological storage, and finally analyzes the technical challenges and application limitations faced by current geophysical monitoring techniques, while also looking ahead to their future development.
      Results In the face of numerous geomechanical difficulties that may develop throughout the carbon dioxide geological storage process, we can use a variety of geophysical monitoring approaches to target them. For example, we can utilize INSAR, microseismic and time−lapse gravity methods for surface deformation; microseismic methods for induced seismicity; and well−logging methods to damage wellbore integrity. For tracking carbon dioxide plume transportation and potential leakage, time−lapse gravity/seismic, microseismic, and resistivity tomography methods can all play important roles. The advancement of geophysical monitoring technology has given us tremendous confidence in practical applications, but the limitations of the technology itself, the complexity of data processing, and the constraints of the field environment remain significant difficulties that must be addressed. With the booming development of artificial intelligence, geophysical monitoring technology also has new development prospects. In addition, the comprehensive utilization of multi−source information will foster innovation and progress in geophysical monitoring technologies.
      Conclusion Carbon dioxide geological storage is a new opportunity for the geophysical industry brought by the dual−carbon target, and vigorously developing a suitable long−term and stable monitoring system for carbon dioxide geological storage is an important application field for geophysics to develop new markets. Leveraging the wave of artificial intelligence and integrating multiple geophysical methods to monitor carbon dioxide geologic storage projects is a trend for the future.

       

    /

    返回文章
    返回