Abstract:
This paper is the result of salt mine geological survey engineering.
Objective Geological hydrogen storage has the outstanding advantages of large scale, long period and cross−season energy storage, which is an important development direction of large−scale hydrogen energy storage in the future.
Methods This review systematically collects and collates the research results in the field of geological hydrogen storage, and discusses the current situation of geological hydrogen storage engineering based on literature investigation. At the same time, the review makes full reference to the experience of salt cavern gas storage engineering construction, analyzes the challenges in the construction of salt cavern hydrogen storage in China, and puts forward solutions. Based on the salt basin resource condition and the comprehensive utilization experience of salt cavern in Jintan District of Jiangsu Province, the possibility of constructing the technical route of salt cavern hydrogen storage is explored.
Results This review primarily entails the following understandings: (1) Geological hydrogen storage facilities are classified according to geological structures into salt caverns, depleted oil and gas reservoirs, aquifers, and abandoned mines. Among these, salt cavern storage facilities have the highest number of operational and research projects. They achieve hydrogen storage with purity exceeding 95%, making them the primary direction for large−scale geological hydrogen storage development. (2) The construction cycle of salt cavern hydrogen storage can be divided into eight stages, including site selection, drilling, solution mining, injection and production completion, gas first fill, snubbing, operation and monitoring, which can refer to the construction experience of salt cavern natural gas storage, but there are still problems in policy, materials and construction technology. (3) In Jintan area of Jiangsu Province, the salt cavern hydrogen storage technology route can be combined with the salt cavern compressed air energy storage and salt cavern natural gas storage technology to form a set of comprehensive technical solutions, including renewable energy power generation technology, high−pressure air compression technology, electrolytic water hydrogen production technology and natural gas pipeline hydrogen mixing technology.
Conclusion In recent years, the site selection, investigation, and experimental verification of geological hydrogen storage facilities abroad have been accelerating, with several geological hydrogen storage projects in the pilot stage. Considering factors such as safety, economy, and technical difficulty, salt cavern storage is considered the primary direction for large−scale geological hydrogen storage in our country. Establishing a salt cavern hydrogen storage verification platform and advancing demonstration project construction will help to form a salt cavern hydrogen storage technology system with independent intellectual property rights.