高级检索

    共和盆地恰卜恰深部花岗岩热储时频电磁法探测及干热岩体预测

    Deep-seated granite thermal reservoir exploration and hot dry rock (hdr) potential assessment in the Qiabuqia Area, Gonghe Basin: A time-frequency electromagnetic (tfem) method approach

    • 摘要:
      研究目的 共和盆地恰卜恰地区是国内花岗岩热储型干热岩研究热点区域。本文旨在查明恰卜恰地区盖层厚度和花岗岩基底起伏形态,分析花岗岩体的空间分布特征,预测干热岩体的空间分布。
      研究方法 本文首次将主要用于深部油气勘探的时频电磁法应用于干热岩探测,在获取高品质原始数据的基础上,采用数据预处理、电性参数提取、约束反演等技术,得到了电阻率反演剖面;采用综合解释技术,结合已有的地质、钻孔、测井及其他物探资料,得到了研究区地层构造、花岗岩体与干热岩体的分布特征。
      研究结果 (1)时频电磁法可有效识别10 km以浅地层电性变化特征,时频电磁法电阻率反演剖面整体表现为典型的H型电性特征(次高阻层-低阻层-高阻层),盖层厚度呈东薄西厚,约900~1400 m;10 km深度范围内,整体上花岗岩电阻率随深度的增加而变大,表现为A型电性特征,顶界面埋深呈东浅西深,约−900~−2900 m。(2)结合钻孔测温资料,预测了恰卜恰干热岩体和达连海干热岩体的空间展布特征。
      研究结论 (1)通过对热流传导规律的分析,认为岩体较完整的岩基和岩株是主要的热流汇聚区,最有可能是干热岩体。(2)深部岩浆在上侵时存在不均一性,导致花岗岩体呈深部岩基、中部岩株、浅部岩床的分布特征。③花岗岩体内电阻率存在一定的差异,在一定程度上指示了花岗岩体的完整性,深部岩基、中部岩株较浅部岩床更加完整。

       

      Abstract:
      This paper is the result of geothermal survey engineering.
      Objective The Qiabuqia area within China's Gonghe Basin represents a key research zone for granite−hosted hot dry rock (HDR) systems. This study systematically investigates the caprock thickness variation and granite basement topography while elucidating the spatial configuration of granitic bodies to establish predictive models for HDR reservoir distribution.
      Methods Innovatively applying the Time−Frequency Electromagnetic (TFEM) method−traditionally employed in deep hydrocarbon exploration − to HDR characterization, we implemented a comprehensive workflow encompassing advanced data preprocessing, electrical parameter optimization, and constrained inversion modeling. Integrated interpretation of resistivity profiles with multi−source datasets (geological mapping, borehole logs, and auxiliary geophysical surveys) enabled three−dimensional reconstruction of stratigraphic architecture, granitic intrusion geometry, and HDR reservoir characteristics.
      Results (1) TFEM demonstrates exceptional capability in resolving electrical stratigraphy within 10 km depth. Resistivity profiles reveal a tripartite H−type structure comprising a sub−high−resistivity superficial layer (900−1,400 m thickness, eastward−thinning), an intermediate conductive zone, and a high−resistivity basement. Granitic bodies exhibit A−type resistivity progression with depth, featuring westward−deepening top surfaces (−900 to −2900 m elevation). (2) Thermal logging−constrained models delineate distinct spatial configurations of the Qiabuqia and Dalianhai HDR reservoirs, demonstrating strong correlation with structural highs.
      Conclusions (1)Thermo−structural analysis identifies competent batholiths and stocks as preferential heat flow conduits, serving as prime HDR exploration targets. (2)Magmatic emplacement heterogeneity drives vertical zonation: deep−seated batholiths transition upward through intermediate stocks to shallow sills. (3)Resistivity anomalies within granitic masses reflect structural integrity gradients, with batholiths and stocks exhibiting superior mechanical continuity compared to fractured sill complexes.

       

    /

    返回文章
    返回