高级检索
    魏红霞, 王聚杰, 曾普胜, 汪双清. 黔西北骑龙村剖面五峰-龙马溪组黑色页岩孔隙结构特征[J]. 中国地质, 2018, 45(2): 274-285. DOI: 10.12029/gc20180205
    引用本文: 魏红霞, 王聚杰, 曾普胜, 汪双清. 黔西北骑龙村剖面五峰-龙马溪组黑色页岩孔隙结构特征[J]. 中国地质, 2018, 45(2): 274-285. DOI: 10.12029/gc20180205
    WEI Hongxia, WANG Jujie, ZENG Pusheng, WANG Shuangqing. Micropore structure characteristics of Wufeng-Longmaxi Formation black shale along Qilongcun section in northwest Guizhou[J]. GEOLOGY IN CHINA, 2018, 45(2): 274-285. DOI: 10.12029/gc20180205
    Citation: WEI Hongxia, WANG Jujie, ZENG Pusheng, WANG Shuangqing. Micropore structure characteristics of Wufeng-Longmaxi Formation black shale along Qilongcun section in northwest Guizhou[J]. GEOLOGY IN CHINA, 2018, 45(2): 274-285. DOI: 10.12029/gc20180205

    黔西北骑龙村剖面五峰-龙马溪组黑色页岩孔隙结构特征

    Micropore structure characteristics of Wufeng-Longmaxi Formation black shale along Qilongcun section in northwest Guizhou

    • 摘要: 页岩的孔隙类型、结构对于页岩气资源评价与开采具有重要意义,为了进一步认识页岩孔隙结构特征及其演化规律,利用场发射扫描电镜、氮气吸附实验对黔西北骑龙村剖面五峰-龙马溪组黑色页岩微观孔隙类型、结构进行了研究,结果表明,研究区五峰-龙马溪组页岩气储层的储集空间类型多样,主要包含粒内孔、粒间孔、有机质孔和微裂缝。页岩孔隙以介孔为主,介孔是页岩气的主要储集空间;孔隙结构以墨水瓶状孔和平行板状孔为主。探讨了影响页岩孔隙发育的主要因素,有机碳含量、热演化程度和矿物成分含量均对页岩孔隙的发育有影响,而且并非单相性的,是相互制约的。研究剖面石英含量与微孔、中孔的发育程度呈良好的正相关关系,而与宏孔发育程度的相关性不明显;黏土矿物含量与微孔、中孔的发育程度的相关性不明显,而与宏孔的发育程度呈负相关关系;有机质孔隙正处在其发育高峰期,对于页岩孔隙具有重要贡献,且随成熟度增加而增加。

       

      Abstract: Pore types and structures are of great significance for shale gas resources evaluation. In order to study the pore structure features and evolution regularity of shale, the authors used field emission-scanning electron microscopy (FE-SEM) and nitrogen adsorption method to study the pore characteristics and structures of black shale samples from the Late Ordovician-Lower Silurian Wufeng-Longmaxi Formation of the marine shale gas reservoir in northwest Guizhou. The results show that the shale has various kinds of reservoir space, mainly comprising intragranular pores, intergranular pores, organic pores and microfractures. Low temperature nitrogen adsorption experiment results show that the pores in the shale are mainly mesopores in size, and mainly include ink bottle-like and parallel plate-like pores in structure. The authors investigated the main factors influencing the shale pore development, organic carbon content, degree of thermal evolution and content of mineral composition and found that their actions were not conducted singly but restricted each other in influencing the development of shale pores. Quartz content is correlated positively with micro-and mesopores, but has no evident relationship with macropores. Clay content has no obvious relationship with micro-and mesopores, but has negative relationship with macropores. The organic matter pore is at its peak of development, has an important contribution to shale pores, and increases with the increase of maturity.

       

    /

    返回文章
    返回