高级检索
    罗照华, 杨宗锋, 代耕, 程黎鹿, 周久龙. 火成岩的晶体群与成因矿物学展望[J]. 中国地质, 2013, 40(1): 176-181.
    引用本文: 罗照华, 杨宗锋, 代耕, 程黎鹿, 周久龙. 火成岩的晶体群与成因矿物学展望[J]. 中国地质, 2013, 40(1): 176-181.
    LUO Zhao-hua, YANG Zong-feng, DAI Geng, CHENG Li-lu, ZHOU Jiu-long. Crystal populations of igneous rocks and their implications in genetic mineralogy[J]. GEOLOGY IN CHINA, 2013, 40(1): 176-181.
    Citation: LUO Zhao-hua, YANG Zong-feng, DAI Geng, CHENG Li-lu, ZHOU Jiu-long. Crystal populations of igneous rocks and their implications in genetic mineralogy[J]. GEOLOGY IN CHINA, 2013, 40(1): 176-181.

    火成岩的晶体群与成因矿物学展望

    Crystal populations of igneous rocks and their implications in genetic mineralogy

    • 摘要: 提要:岩浆系统物理过程的研究进展导致了岩浆系统成熟度的概念,因而认识到火成岩中的晶体并非全部由寄主熔体晶出。本文将火成岩中的矿物晶体按其加入岩浆系统的方式划分为3种晶体群:固体晶体群、熔体晶体群和流体晶体群。固体晶体群系指呈固态加入岩浆的晶体群,包括残留晶亚群和捕虏晶亚群;熔体晶体群系指从熔体中晶出的晶体群,包括从不同深度水平岩浆房中晶出的晶体亚群(岩浆房晶体亚群)、岩浆上升途中晶出的晶体亚群(通道晶体亚群)、在岩浆系统中长期循环的晶体亚群(循环晶亚群)和岩浆侵位后晶出的晶体亚群(基质晶亚群)。流体晶体群系指从流体相晶出的晶体群,包括从超临界流体晶出的晶体亚群(超临界晶体亚群)、从气体晶出的晶体亚群(凝聚晶体亚群)和从热液晶出的晶体亚群(热液晶体亚群)。这种划分方案为火成岩成因矿物学研究打开了新的窗口,阐明不同晶体群的标型特征和形成条件是成因矿物学研究的重要任务。理论上,残留晶与原生岩浆保持热力学平衡,捕虏晶一般与岩浆不平衡,熔体晶体群在岩浆系统演化的特定阶段上与岩浆保持热力学平衡,而流体晶体群则一般不与岩浆平衡,但超临界晶体亚群可部分与岩浆平衡。各种晶体群在火成岩中的保存程度与岩浆系统的存续时间尺度和晶体吸收速率紧密相关。在快速上升和固结的岩浆系统中,所有的晶体群都有可能得到保存。相反,在缓慢上升和固结的岩浆系统中,有可能仅保留有基质晶亚群。因此,晶体群的数量和颗粒大小可以用来定性评价岩浆系统存活的时间尺度,定量化结构分析将成为成因矿物学的重要研究内容。

       

      Abstract: Abstract:The new concept of maturity of the magma system emerges from the study of the physical processes of magmatic systems, from which it is recognized that not all of the crystals in igneous rocks are crystallized from their host magma. According to the ways of adding crystals to the magmatic system, the crystals in igneous rocks can be divided into three populations:solid-, melt- and fluid-crystal populations. The solid-crystal population means that the crystals exist in solid state before they are added into the magmatic system, including residual crystal sub-population and xenocryst sub-population. The melt-crystal population consists of the crystals crystallized from a melt, including crystals from the magma chambers at different depths (chamber crystal sub-population), crystals from magma conduits (channel crystal sub-population), crystals that have crystallized from progenitors of the final magma and have been ‘reincorporated’ into the final magma (antecryst sub-population), and crystals that have been crystallized after magma emplacement (matrix crystal sub-population). The fluid-crystal population is used to define crystals separated out from fluids, including crystals from the super-critical fluid (super-critical crystal sub-population), from vapor (condensation crystal sub-population), and from hydrothermal liquid (hydrothermal crystal sub-population). Such a division opens a new window for the future of genetic mineralogy of igneous rocks. Accordingly, an important duty of genetic mineralogy is to clarify the typical characteristics of various crystal populations and their forming conditions. Theoretically, the residual crystal is in thermodynamic equilibrium with the primary magma; the xenocryst is generally in disequilibrium with the host magma; the melt-crystal is in equilibrium with the magma produced at a special stage in the evolution of the magma system; the fluid-crystal is commonly in disequilibrium with magma, but a part of crystals from the super-critical crystal sub-population can be in equilibrium with the host magma. Therefore, the fluid-crystal is occasionally coexisting with the melt-crystals. The preservation of crystal populations in igneous rocks is related to the existing time of the magma system and the resorption rate of crystals. In the magma system where the magma quickly rises up and consolidates, all the crystal populations could be preserved; otherwise, only the matrix crystal sub-population is preserved. Accordingly, the number of population and the crystal size distribution can be used to qualitatively evaluate the existing time of a magma system and its dynamic conditions. Therefore, the quantitative analysis of igneous texture will be an important task in genetic mineralogy.

       

    /

    返回文章
    返回