Accretion rate and controlling factors of carbon and nutrients during coastal wetland evolution in Yellow River Delta
-
摘要: 2007年在黄河三角洲布设了一口浅钻ZK4,孔深28.3 m,对获取的岩心样品进行了详细的沉积学观测及含水量、有机碳、总碳和营养成分的实验室分析测试。通过ZK4孔的地层分析,将其划分为7种沉积环境,揭示了滨海湿地地质演化过程。并利用AMS14C测年方法,结合黄河改道的历史记录,运用历史地理学和沉积地质学综合分析的方法对黄河三角洲沉积环境进行了年代划分,并计算了黄河三角洲不同沉积环境沉积物的沉积速率和碳的加积速率。结果表明:总碳和有机碳与除硫和磷元素以外的各营养成分都呈良好的线性相关;碳、氮、磷的加积速率与沉积物的沉积速率呈极显著正相关关系(R>0.89,p<0.01),沉积物的沉积速率是碳、氮、磷的加积速率的主控因素;虽然现代黄河三角洲沉积物有机碳浓度较低(<1%),但由于沉积物的高沉积速率,现代黄河三角洲沉积物有机碳的平均加积速率达到2878.23 g/(m2·a),远高于世界其他高有机碳浓度的湿地,因此是很好的碳汇地质体。Abstract: Core ZK4 with a shallow depth of 28.3 m was drilled in the Yellow River Delta in 2007. Samples from the core were used in the laboratory to make detailed sedimentological observations and perform analysis of water content, organic carbon (Corg), total carbon (TC), and nutrient compositions. According to the stratigraphic analyses of core ZK1, seven sedimentary environments were recognized, and the historical evolutions of coastal wetlands were revealed. Chronologies, sedimentation rates and carbon accretion rates of the environments were revealed from AMS14C dating method, historical records of the Yellow River diversions, and comprehensive analyses by means of historic geography and sedimentary geology. The results show that total carbons, organic carbons and nutrients (except for element S) are all in good linear correlations, the accretion rates of Corg, TC, N and P have very significantly positive correlations with sedimentation rates shown as R>0.89, p<0.01, and the sedimentation rates are the main factor controlling accretion rates of Corg, TC, N and P. Although Corg concentrations are low (<1%) in the modern Yellow River Delta sediments, the high sedimentation rates have made the average accretion rate of Corg in the sediments come up to 2878.23 g/(m2·a), much higher than the values in other high-Corg wetlands in the world, and thus the modern Yellow River Delta can be considered to be a very good carbon sink due to its high sedimentation rate.
-
Keywords:
- coastal wetland /
- organic carbon /
- accretion rate /
- Yellow River Delta
-
-
表 1 黄河三角洲ZK4孔岩心沉积物特征
Table 1 Element characteristics of the sediments core ZK4 from Yellow River Delta
参数 Cu N Mn P S Zn Al Fe Mg Ca Na K TC Corg pH μg/g mg/g 最大值 40.23 931 965.5 697 1648 99.7 272 97.5 56.5 177 38.9 34.5 22.9 8.904 8.8 最小值 7.69 70 284.4 267 145 22 166 24.9 16.3 51.7 18.76 22.8 6.2 0.577 7.92 平均值 23.34 353.35 583.1 560.6 536.5 60.8 222 59.45 39 96.2 28.20 28.36 14.76 3.99 8.45 标准偏差 9.19 198.38 196.8 119.7 346.6 21.3 29.95 19.12 10.2 24.25 5.42 2.99 4.33 1.83 0.195 变异系数 0.394 0.561 0.337 0.214 0.646 0.35 0.135 0.322 0.261 0.252 0.192 0.105 0.293 0.459 0.023 表 2 沉积物碳、 Al及营养成分浓度的相关系数
Table 2 Correlations between carbons, Al and nutrients of the sediments
Cu N Mn P S Zn Al Te Mg Ca Na K TC Corg Cu 1 0.685** 0.876** 0.560** 0.116 0.942** 0.869** 0.905** 0.880** 0.690** -0.839** 0.753** 0.764** 0.560** N 1 0.711** 0.606** 0.573** 0.772** 0.756** 0.769** 0.799** 0.476** -0.554** 0.721** 0.772** 0.769** Mn 1 0.539** 0.089 0.949** 0.926** 0.967** 0.929** 0.842** -0.925** 0.821** 0.908** 0.583** P 1 0.366* 0.668** 0.635** 0.652** 0.727** 0.261 -0.329* 0.373* 0.495** 0.671** S 1 0.203 0.300* 0.208 0.291* -0.002 0.029 0.340* 0.219 0.468** Zn 1 0.959** 0.989** 0.976** 0.717** -0.864** 0.833** 0.852** 0.673** Al 1 0.973** 0.964** 0.688** -0.843** 0.893** 0.820** 0.648** Te 1 0.980** 0.754** -0.884** 0.850** 0.875** 0.661** Mg 1 0.727** -0.816** 0.794** 0.874** 0.705** Ca 1 -0.856** 0.564** 0.874** 0.350* Na 1 -0.775** -0.837** -0.414** K 1 0.688** 0.597** TC 1 0.582** Corg 1 注: **表示在 0.01 水平 (双侧) 上显著相关; *表示在 0.05 水平 (双侧) 上显著相关。 表 4 加积速率与其他参数的相关性分析
Table 4 Correlations between carbon accretion rate, sediment accretion rate, BD, TC and Corg of the sediments
沉积 速率 原位 密度 TC含量 Corg含量 N含量 P含量 TC加积速率 Corg加积率 N加积 速率 P加积 速率 沉积速率 1 -0.111 0.256 -0.714 -0.358 -0.421 0.959** 0.970** 0.896* 0.998** 原位密度 1 -0.929** -0.484 -0.751 -0.466 -0.367 -0.332 -0.508 -0.170 TC含量 1 0.349 0.681 0.345 0.505 0.473 0.637 0.315 Corg含量 1 0.899* 0.402 -0.524 -0.553 -0.385 -0.676 N含量 1 0.283 -0.106 -0.141 0.054 -0.304 P含量 1 -0.328 -0.345 -0.261 -0.402 TC加积速率 1 0.999** 0.985** 0.975** Corg加积速率 1 0.977** 0.983** N加积速率 1 0.922** P加积速率 1 注: **表示在 0.01 水平 (双侧) 上显著相关; *表示在 0.05 水平 (双侧) 上显著相关。 表 3 黄河三角洲不同沉积环境垂向沉积速率与 C的加积速率计算
Table 3 Vertical sediment rate and accretion rate of carbon of different sediment environments in Yellow River Delta
沉积层位 沉积速率/(cm/a) 原位密度/(g/cm3) TC含量/(mg/g) Corg含量/(mg/g) N含量/(mg/g) P含量/(mg/g) TC加积速率/(g/(m2·a)) Corg加积速率/(g/(m2·a)) N加积速率/(g/(m2·a)) P加积速率/(g/(m2·a)) 沉积环境 U7 52.6 1.60 12.29 3.25 0.23 0.59 8603.96 2268.35 158.97 415.61 三角洲平原 U6 53.5 1.20 18.93 4.63 0.51 0.62 14261.16 3488.11 380.6 469.05 三角洲侧缘 U5 0.72 1.50 14.30 4.51 0.42 0.60 152.52 48.11 4.54 6.39 新陆架 U4 0.44 1.40 14.28 4.87 0.36 0.66 95.31 32.54 2.39 4.39 老三角洲 U3 0.045 1.35 14.3 5.13 0.45 0.66 9.90 3.55 0.31 0.46 老陆架 U2 0.58 1.46 14.35 5.52 0.52 0.60 129.53 49.82 4.68 5.45 潮坪 -
[1] Duan Xiaonan, Wang Xiaoke, Fei Lu et al. Primary evaluation of carbon sequestration potential of wetlands in China[J]. Acta Ecologica Sinica, 2008, 28(2):463-469.
[2] Brevik E C,Homburg J A. A 5000 year record of carbon sequestration from a coastal lagoon and wetland complex[J]. Southern California,USA. Catena, 2004, 57(3):221-232.
[3] Peter Smith. Carbon sequestration in croplands:the potential in Europe and the global context[J]. Agronomy, 2004, 20(3):229-236.
[4] Shiping Zhang, Lei Wang, JiaJun Hu et al. Organic carbon accumulation capability of two typical tidal wetland soils in Chongming Dongtan, China[J]. Journal of Environmental Sciences, 2011, 23(1):87-94.
[5] Ye S Y, Law E A, Wu Q et al. Pyritization of trace metals in estuarine sediments and the controlling factors:a case in Jiaojiang Estuary of Zhejiang Province, China[J]. Environ. Earth Sci., 2010, 61(5):973-982.
[6] Ye S Y, Laws E A, Zhong S et al. Sequestration of metals through association with pyrite in subtidal sediments of the Nanpaishui Estuary on the Western Bank of the Bohai Sea, China[J]. Marine Pollution Bulletin, 2011, 62(5)934-941.
[7] 余雪洋, 叶思源, NicholasLawrenceYuknis, 等. 辽河三角洲翅碱蓬湿地不同植被覆盖度下的土壤对碳的扣留[J]. 中国地质, 2014, 41(2):648-657. Yu Xueyang, Ye Siyuan, Nicholas Lawrence Yuknis, et al. Carbon sequestration along vegetation coverage gradient in the Suaeda salsa marsh from the Liaohe Delta[J]. Geology in China, 2014, 41(2):648-657(in Chinese with English abstract). [8] 赵一阳, 鄢明才, 李安春, 等. 中国近海沿岸泥的地球化学特征及其指示意义[J]. 中国地质, 2002, 29(2):181-185. Zhao Yiyang, Wu Mingcai, Li Anchun, et al. Geochemistry of muds along the coast of China and their significance[J]. Geology in China, 2002, 29(2):181-185(in Chinese with English abstract). [9] 文冬光, 郭建强, 张森琦, 等. 中国二氧化碳地质储存研究进展[J]. 中国地质, 2014, 41(5):1716-1723. Wen Dongguang, Guo Jianqiang, Zhang Senqi, et al. The progress in the research on carbon dioxide geological storage in China[J]. Geology in China, 2014, 41(5):1716-1723(in Chinese with English abstract). [10] 范德江, 杨作升, 郭志刚.中国陆架210Pb测年应用现状与思考[J]. 地球科学进展, 2000, 15(3):297-302. Fan Dejiang, Yang Zuosheng, Guo Zhigang. Review of 210Pb dating in the continental shelf of China[J].Advance In Earth Sciences, 2000, 15(3):297-302(in Chinese with English abstract). [11] 丁玉蓉, 叶思源, 赵全升.黄河三角洲新生湿地土壤对营养成分和碳的扣留[J].地质论评, 2012, 58(1):183-189. Ding Yurong, Ye Siyuan, Zhao Quansheng. Nutrient sand carbon sequestration the newly created wetland of Yellow River Delta[J]. Geological Review, 2012, 58(1):183-189(in Chinese with English abstract). [12] Berner R A. Sedimentary pyrite formation.Am. J. Sci., 1970, 268:1-23.
[13] 薛春汀, 叶思源, 高茂生, 等. 现代黄河三角洲沉积物沉积年代的确定[J]. 海洋学报(中文版), 2009, 31(1):117-124. Xue Chunting, Ye Siyuan, Gao Maosheng, et al. Determination of depositional age in the Huanghe Delta in China[J].Acta Oceanologica Sinica, 2009, 31(1):117-124(in Chinese with English abstract). [14] 汪品先, 闵秋定, 卞云华.南黄海西北部底质中有孔虫、介形虫分布规律及其地质意义[M]//汪品先.微体古生物论文集. 北京:海洋出版社, 1985:61-83. Wang Pinxian, Min Qiubao, Bian Yunhua. Dixtribution of foraminifera and ostracoda in bottom sediments of the northwestern oart of the southern yellow sea and its geological significance[M]//Wang Pinxian. Proceedings of Micropaleontology. Beijing:Oceanic Press, 1985:61-83. (in Chinese with English abstract) [15] Hanebuth Till J J, Harold K. Voris, Yusuke Yokoyama et al. Formation and fate of sedimentary depocentres on Southeast Asia's Sunda Shelf over the past sea-level cycle and biogeographic implications[J]. Earth-Science Reviews, 2011, 104(1-3):92-110.
[16] 山东省科学技术委员会. 黄河口调查区综合调查报告[M]. 北京:中国科学技术出版社, 1991:25-26. Shandong Province Science and Technology Committee. Investigation Report of Yellow River Estuary[M]. Beijing:China Science and Technology Press, 1991:25-26(in Chinese). [17] Nair V D, Graetz D A, Reddy K R et al. Soil development in Phosphate-mined Created Wetlands of Florida, USA[J]. The Society ofWetland Scientists,Wetlands, 2001, 21(2):232-239.
[18] Craft C B, Richardson C J. Recent and long-term organic soil accretion and nutrient accumulation in the Everglades[J]. Soil Science Society of American Journal, 1998, 62(3):834-843.
[19] Hatton R S, Patrick W H, DeLaune R D. Sedimentation, nutrient accumulation, and early digenesis in Louisiana Barataria Basin coastal marshes in V. S. Kennedy (ed.). Esturine Comparisons[M]. Academic Press, New York, NY, USA, 1982:255-267.
[20] Azevedo W R, Faquin V, Femandes L A. Boron absorption in lowland soils flux southern of the state of Minas Gerais, Brazil[J].Pesquisa AgTopecuaria Brasileira, 2001, 36(7):957-964.
[21] Meyers P A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processe[J]. Organic Geochemistry, 1997, 27(5-6):213-250.
[22] Prahl F G, Ertel J R, Goni M A, et al. Terrestrial organic carbon contributions to sediments on the Washington margin[J]. Geochimica et Cosmochimica Acta, 1994, 58(14):3035-3048.
[23] Thornton S F, McManus J. Application of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems:Evidence from the Tay Estuary, Scotland.Estuarine[J]. Coastal and Shelf Science, 1994, 38(3):219-233.
[24] Ruttenberg K C, Goni M A. Phosphorus distribution, C:N:P ratios, and δ13Corg in arctic, temperate, and tropical coastal sediments:Tools for characterizing bulk sedimentary organic matter[J]. Marine Geology, 1997, 139:123-145.
[25] Andrews J E, Greenaway A M, Dennis P F.Combined carbon isotope and C/N ratios as indicators of source and fate of organic matter in a poorly flushed, tropical estuary:Hunts Bay, Kingston Harbour, Jamaica, Estuarine[J].Coastal and Shelf Science, 1998, 46:743-756.
[26] Muller A, Mathesius U.The paleoenvironments of coastal lagoons in the southern Baltic Sea, I. The application of sedimentary Corg/N ratios as source indicators of organic matter[J]. Palaeogeography.Palaeoclimatology, Palaeoecology, 1999, 145:1-16.
[27] Meyers P A. Preservation of elemental and isotopic source identification of sedimentary organic matter[J]. Chemical Geology, 1994, 114:289-302.
[28] Bordovsky O K. Accumulation and transformation of organic substances in marine sediments[J]. Marine Geology, 1965, 3:3-114.
[29] Prahl F G, Bennett J T, Carpenter R. The early diagenesis of aliphatic hydrocarbons and organic matter in sedimentary particulates from Dabob Bay, Washington[J].Geochimica et Cosmochimica Acta, 1980, 44:1967-1976.
[30] 叶思源, 丁喜桂, 袁红明, 等. 我国滨海湿地保护的地学问题与研究任务[J].海洋地质前沿, 2011, 27(2):1-7. Ye Siyuan, Ding Xigui, Yuan Hongming, et al. Coastal wetland protection in China:Geological issues and research tasks[J]. Marine Geology Frontiers, 2011, 27(2):1-7(in Chinese with English abstract). [31] Chmura G L, Anisfeld S C, Cahoon D R, et al. Global carbon sequestration in tidal, saline wetland soils[J]. Global Biogeochem, 2003, 17:1111-1121.
[32] Turner R E, Swenson E M, Milan C S. Organic and inorganic contributions to vertical accretion in salt marsh sediments[C]//Weinstein M, Kreeger D A (eds.). Concepts and Controverisies in Tidal Marsh Ecology. Dordrecht:Kluwer Acadejmic Publishing, 2000:583-595.
[33] Bridgham S D, Megonigal J P, Keller J K, et al. The carbon banlance of North American wetlands[J].Wetlands, 2006, 26:889-916.
[34] Craft C B. Freshwater input structures soil properties, vertical accretion, and nutrient accumulation of Georgia and U.S. tidal marshes[J]. Limnol Oceanogr, 2007, 52:1220-1230.
-
期刊类型引用(9)
1. 于淼,郭雪莲,栗云召,张昆,杜朝红. 黄河口咸淡水交互作用对芦苇湿地土壤有机碳空间分异的影响. 应用生态学报. 2024(02): 415-423 . 百度学术
2. 裴理鑫,叶思源,何磊,赵广明,袁红明,丁喜桂,裴绍峰,李雪,王法明,Edward A.Laws. 中国湿地资源与开发保护现状及其管理建议. 中国地质. 2023(02): 459-478 . 本站查看
3. 何磊,叶思源,赵广明,谢柳娟,裴绍峰,丁喜桂,杨士雄,Hans Brix,Edward A.Laws. 海岸带滨海湿地蓝碳管理的研究进展. 中国地质. 2023(03): 777-794 . 本站查看
4. 朱宁,徐亚东,季军良,曹凯,李星波,孙玲,邹司雅,彭绍勇,易念,张笛. 川西理塘高原冰蚀湖记录的晚更新世古地震事件. 地球科学. 2023(09): 3562-3576 . 百度学术
5. 柯南,周书悦,朱志欣,王喆,叶孙慧. 浙西南中小型湿地系统生态产品总值核算——以松阴溪湿地为例. 丽水学院学报. 2023(05): 69-81 . 百度学术
6. 陈皓,何磊,叶思源,韩宗珠,袁红明,Edward A. Laws. 渤海湾北部滦河三角洲晚更新世以来沉积环境划分及碳埋藏速率的评价. 中国地质. 2022(05): 1555-1570 . 本站查看
7. 雷雁翔,何磊,王玉敏,张朋朋,张斌,胡蕾,吴治国,叶思源. 渤海湾西岸晚更新世以来的沉积环境演化及碳埋藏评价. 海洋地质与第四纪地质. 2021(06): 194-205 . 百度学术
8. 熊伟,梅西,韩宗珠,王中波,张勇. 东海表层沉积物正构烷烃特征及其对陆源有机碳运移分布的指示. 海洋地质前沿. 2020(10): 22-31 . 百度学术
9. 马瑞罡,胥勤勉,褚忠信. 黄河三角洲GJ1孔晚第四纪地层层序及全新世沉积单元划分. 中国海洋大学学报(自然科学版). 2017(12): 97-109 . 百度学术
其他类型引用(2)