The Zircon U-Pb geochronology and dynamics mechanism for the formation of monzonitic granite in the Qiongbola area, south of Yili basin
-
摘要:
西天山造山带内琼博拉地区的长条状岩体位于伊犁盆地南缘,由二长花岗岩组成。为厘定该二长花岗岩的形成机制,本文对该二长花岗岩进行了详细的锆石U-Pb年代学、主量元素、微量元素以及Sr-Nd-Pb同位素研究。LA-ICP-MS锆石年代学研究揭示出琼博拉地区二长花岗岩成岩年龄为(330.5±2.2)Ma、(339.7±2.2)Ma、(351.2±3.0)Ma,为早中石炭世花岗岩,比伊犁盆地511矿床含矿砂体的U-Pb同位素等时线年龄(308±26Ma)老,表明该二长花岗岩体可能是该含矿砂体的一部分物质来源。岩石主量元素、微量元素和Sr-Nd-Pb同位素测试结果揭示该二长花岗岩具有以下特征:(1)SiO2(70.15%~73.38%)含量高,碱质(K2O+Na2O含量为6.32%~7.88%)含量较高,A/CNK(0.82~1.03)较高,表明二长花岗岩为准铝质岩石,属于高钾钙碱性系列;(2)LREE(50.19×10-6~87.92×10-6)相对富集,HREE(9.44×10-6~12.08×10-6)相对亏损,无明显Eu异常(δEu为0.71~0.97);(3)富集Rb、Th、K、Pb和Sr等大离子亲石元素,相对亏损Nb、Ta、Zr、P和Ti等高场强元素;(4)初始锶同位素比值为0.7050~0.7082,143Nd/144Nd值为0.512217~0.512254,εNd(t)为0.3~1.0,Nd模式年龄为1010~1098 Ma。二长花岗岩的Sr、Nd、Pb同位素组成表明该岩石是由幔源玄武质岩浆与地壳重熔形成的硅铝质岩浆混染形成。结合区域构造演化,本文认为二长花岗岩形成于板块的同碰撞构造环境。
-
关键词:
- 二长花岗岩 /
- 锆石年代学 /
- Sr-Nd-Pb同位素 /
- 琼博拉 /
- 西天山
Abstract:Located in the south of Yili basin, the Western Tianshan Orogen belt played an essential provenance role in the formation of Yili basin. This paper focused on the dominant monzonitic granites of Qiongbola area, which is situated on the northern margin of Western Tianshan belt. The authors investigated their U-Pb geochronology by using zircon and geochemistry. These granites are Early Carboniferous intrusions, which mainly include three stages, which are (351.2±3.0) Ma, (339.7±2.2) Ma, and (330.5±2.2) Ma, respectively, according to the LA-ICP-MS U-Pb dating results of zircons. The whole-rock U-Pb dating of ore-bearing sandstone of 511 U deposit yielded an isochron age of 308±26Ma, suggesting that these granites were probably the main provenance for orebearing sandstone. The SiO2 content of these granites varies from 70.15% to 73.38%, the K2O+Na2O values vary from 6.32% to 7.88%, and the A/CNK ratios vary from 0.82 to 1.03, suggesting that these intrusions are high-K calc-alkaline granites. The LREE values are from 50.19×10-6 to 87.92×10-6, suggesting relatively more enriched than HREE which are 9.44×10-6 to 12.08×10-6, with δEu being commonly 0.71 to 0.97. In addition, these granites are commonly rich in Rb, Th, K, Pb, and Sr and depleted in Nb, Ta, Zr, P, and Ti. The Sr isotope ratios range from 0.7050 to 0.7082, the 143Nd/144Nd ratios vary from 0.512217 to 0.512254, and the εNd(t) vary from 0.3 to 1.0, with model ages being from 1010 to 1098 Ma. These geochemical results highly suggest that these intrusions were the mixture of mantle-derived basaltic and crustal molten magma, and were formed in the syn-collision tectonic environment.
-
Keywords:
- geochemistry /
- zircon U-Pb dating /
- Sr-Nd-Pb isotope /
- monzonitic granite /
- Qiongbola
-
1. 引言
天山造山带不仅是中亚巨型造山带的组成部分,也是中国西部晚古生代岩浆活动的集中区,蕴含着丰富的古亚洲洋演化的地质信息。尽管对该造山带的研究已经有百余年的历史,但是关于该山脉的形成演化,特别是关于西天山古生代花岗岩类的成因和构造环境仍有不同的认识。朱志新等(2011)对西天山部分晚古生代侵入岩进行了研究,认为其主要为一套与洋盆收敛俯冲有关的钙碱性花岗岩,晚石炭世及其之后的古生代侵入岩则具有面状分布的特点,主要为一套与同碰撞有关的富铝花岗岩和后造山的富钾花岗岩。Windley等认为早古生代至晚石炭世岩浆岩是南天山洋和北天山洋向伊犁—中天山地块之下俯冲的产物(Windley et al., 1990;Long et al., 2011)。韩宝福等(2004)认为西天山早古生代花岗岩形成于380~490 Ma,认为其主要是与洋盆扩张过程或与早古生代的一次造山过程有关的铝质A型花岗岩。
新疆西天山造山带中部的伊犁盆地(图 1a),北邻天山—兴蒙造山带,南部和塔里木陆块相邻,地理上总体呈西宽东窄的三角形。伊犁盆地是在石炭纪—二叠纪裂谷基础上发展演化而成的内陆中新生代山间断陷-坳陷复合型盆地(张良臣,1985;郝继鹏,1991;车自成等,1994;廖世南,1992;张国伟等,1999;左国朝等,2008),碰撞缝合后属于西天山造山带内的山间盆地。
伊犁盆地南缘为中国重要的砂岩型铀矿集区,分布有众多的铀矿床、铀矿(化)点,资源潜力巨大(张金带,2010;刘红旭,2015)。根据现有研究认识,盆地南部察布查尔山大范围出露的古生代中酸性花岗岩及火山岩为盆地砂岩型铀矿含矿目的层的物源供给区,因其花岗岩的成岩环境及其含铀性决定了盆地砂岩型铀矿化的规模而备受关注(陈戴生等,1994;陈戴生等,1997;李胜祥等,2005;李胜祥等,2006)。该花岗岩成岩环境及其构造背景研究对于认识中新生代盆地基底构造属性、评价盆地产铀潜力具有重要的科学意义。
本文在前人研究基础上,结合近年来区域地质调查成果,通过对位于西天山西段察布察尔山北坡琼博拉花岗岩的岩石学、岩石地球化学及同位素年代学等方面的研究,查明该花岗岩岩石地球化学特征及其成岩年代,恢复其成岩环境,探讨伊犁盆地晚古生代基底构造格局及其动力学演化机制,为进一步深化西天山地区板块动力学演化过程和中新生代盆地演化动力学背景研究提供科学依据。
2. 地质概况
研究区位于西天山西段伊犁盆地南缘(图 1a),该区出露了大量的晚古生代石炭纪岩浆岩(图 1b),包括下石炭统大哈拉军山组(C1d)、阿克沙克组(C1ak),上石炭统脑盖吐组(C2n)。大哈拉军山组由玄武岩、玄武安山岩、安山岩、粗面安山岩、英安岩、流纹岩及基性—中酸性火山碎屑凝灰岩组成(茹艳娇等,2012),这些火山岩被认为是板块俯冲碰撞造山的地质记录(朱永峰等,2005;邵铁全等,2006;张江苏等,2006;李注苍等,2006;程春华等,2010;茹艳娇等,2012;朱志新等;2012),具有岛弧火山岩的特征,分布于察布查尔山中部。阿克沙克组主要岩性为砾岩、砂岩、泥岩、灰岩、凝灰岩、凝灰质砂岩(熊绍云等,2011),为俯冲大地构造背景下的弧前深海—半深海相沉积(何国琦等,2005;李永军等,2010),与大哈拉军山组角岩、火山碎屑岩,呈角度不整合接触。脑盖吐组为一套中性、中酸性火山熔岩,岩石组合包括玄武质晶屑凝灰岩、玄武玢岩、安山质玻屑熔结凝灰岩、辉石安山玢岩、英安斑岩、含角砾熔岩、安山质火山角砾岩、浆屑晶屑熔结凝灰岩和凝灰砂岩等(左国朝等,2008),主要分布于察布查尔山北缘,逆冲于盆地盖层之上,与大哈拉军山组和阿克沙克组逆冲断层接触。
3. 岩相学
琼博拉地区发育二长花岗岩,出露面积大约81 km2(图 1b),主要位于研究区的中部和东南部,侵入于下石炭统大哈拉军山组的基性—中性—酸性火山岩中,呈长条状产出。岩石为肉红色和灰白色,中粒结构,块状构造。该二长花岗岩(图 2)的主要矿物为钾长石(35%)、石英(25%)、斜长石(33%)、黑云母和角闪石(4%),不透明矿物主要是磁铁矿,副矿物主要为锆石等,可见锆石和磷灰石包裹于角闪石中。
4. 样品采集及分析测试方法
4.1 样品采集
本次采集的岩石样品均取自伊犁盆地南缘琼博拉花岗岩体,样品以无裂隙、弱风化为标准进行采集并编号。通过显微镜观察,选择风化较弱、裂隙和细脉不发育的样品,共计17件做地球化学分析(采样位置见图 1b)。其中主微量元素分析17件,Sr-Nd同位素分析5件,Pb同位素分析10件。
4.2 LA-ICP-MS锆石U-Pb定年
为了精确厘定二长花岗岩的形成年代,在琼博拉地区采集了典型的二长花岗岩样品,从中挑选锆石,经过手工挑选、制靶、剖光和照相观察。锆石的分选工作是在北京大学地质系完成。岩石样品经粉碎后,再经淘洗、磁选和重液分选,分离出尽可能多的锆石颗粒。再经双目镜人工挑出不同晶形、不同颜色的锆石,剔除颗粒较小、内含包裹体及裂隙、杂质较多的颗粒。锆石制靶以及阴极发光照相工作在北京锆年领航科技有限公司完成。在双目显微镜下挑选至少150颗锆石粘到双面胶上,加注环氧树脂,待固化后,将靶内锆石打磨至原尺寸一半大小。样品靶抛光之后在光学显微镜下拍摄锆石反射光和透射光照片,以观察其抛光面和内部结构情况。通过对锆石靶上碎屑锆石颗粒的形态、锆石的内部结构和颗粒大小等方面的系统研究,选择岩浆环带明显、晶形完整、内部结构简单、少有变质增生边的锆石作为本次测试的对象。通过对照阴极发光、透射光和反射光图像,查明锆石内部结构和裂隙分布情况,选取锆石U-Pb测试点。本次的锆石测年采用LA-ICPMS方法,测试工作在西北大学大陆动力学国家重点实验室完成。所用仪器为Agilent 7500a ICP-MS和德国Lambda Physik AG公司GeoLas 2005 ArF193 nm紫外准分子激光剥蚀系统。其中激光器的单脉冲能量为220 mJ,最高重复频率20 Hz;测试采用8 Hz的激光频率,20 μm的激光束斑直径,激光剥蚀样品的深度为20~40 μm,测试时间45 s,以91500作为工作标样,详细测试方法可参见袁洪林(2012)。对测试结果首先使用Anderson(2002)的方法处理普通铅的校正,在此基础上完成谐和年龄的计算,并借助Isoplot4.0处理数据结果及图件。所测定的锆石年龄均<1000 Ma,U-Pb同位素年龄取206Pb/238U所对应的年龄值,所选取锆石年龄谐和度误差在±10%范围内。
4.3 元素地球化学测试
切割去除岩石风化面,在玛瑙研钵中研磨至200目以下,进行主微量元素和Sr、Nd、Pb同位素分析测试。所有样品分析均在核工业北京地质研究院分析测试研究中心完成。主量元素分析使用Philips PW2404型X荧光光谱仪(XRF)完成,分析误差优于1%;微量元素分析使用Finnigan MAT ElementⅠ型电感耦合等离子体质谱仪(ICP-MS)完成,微量元素分析采用酸溶法溶样,分析结果包括Li、Be、Sc、V、Cr、Co、Ni、Cu、Zn、Ga、Rb、Sr、U、Pb、Y和14个稀土元素REE和W、Re、Tl、Bi、Th、Zr和Hf。主微量元素具体分析方法见文献(Norrish and Hutton, 1969;Qu et al., 2004)。Sr-Nd同位素分析根据微量元素中Rb-Sr、Sm-Nd含量称取适量样品于Teflon闷罐中,加入87Rb-84Sr和149Sm-150Nd混合稀释剂并用HF、HNO3和HClO4充分溶解后,用离子交换树脂分离出Rb、Sr、Sm和Nd,最后在ISOPROBE-T热电离质谱仪(TIMS)上测试。整个分析流程实验本底为:Rb、Sr<100×10-12;Sm、Nd<50×10-12。全岩Pb同位素采用离子交换法分离提纯Pb,由热表面电离质谱完成,仪器型号为ISOPROBE-T,对1 µg的208Pb/206Pb,其相对误差≤ 0.005%(2σ),整个流程的Pb空白本底为0.1 ng,详细的分析流程见相关文献(张理刚等,1993)。岩石化学和地球化学图解用路远发(2004)开发的Geokit软件编辑。
5. 分析结果
5.1 二长花岗岩结晶年龄
样品G26采自伊犁盆地南缘察布查尔山西段琼博拉花岗岩体,据1:20万地质图(图幅号K-44- 4)资料显示,该花岗岩为石炭纪花岗岩(图 1b)。样品中所挑选的锆石呈黄褐色,包体较为发育。自形-半自形,短柱状、棱角状,具有明显的岩浆环带结构,粒度介于100~250 μm(图 3)。CL图像(图 3)显示绝大多数锆石内部结构具有明显的韵律环带,结构上表明锆石为岩浆成因(Crofu et al,2003;Koschek,1993;吴元保等,2004;李长民,2009)。二长花岗岩中锆石Th/U比值介于0.61~ 2.55(平均值为1.89),从化学成分上也证明锆石为典型的岩浆成因(Belousova et al., 2002)。
图 3 样品G26锆石330.5 Ma左右的晶体群的测点位置和LA-ICP MS U-Pb同位素谐和图(a)、样品G26锆石339.7 Ma左右的晶体群的测点位置和LA-ICP MS U-Pb同位素谐和图(b)及样品G26锆石351.2 Ma左右的晶体群的测点位置和LA-ICP MS U-Pb同位素谐和图(c)Figure 3. Dating spots and zircon LA-ICP MS U-Pb isotopic concordia plots for the 330.5 Ma zircons of sample G26(a); Dating spots and zircon LA-ICP MS U-Pb isotopic concordia plots for the 339.7 Ma zircons of sample G26 (b); Dating spots and zircon LAICP MS U-Pb isotopic concordia plots for the 351.2 Ma zircons of sample G26(c)研究区二长花岗岩样品的LA-ICP-MS锆石U-Pb定年结果见表 1和图 3(其中表 1用粗线分为3段,分别对应图 3a、图 3b和图 3c的锆石测点)。从图 3中可以看出,其中28个锆石测点分3组均匀地落在谐和线的三段线上。第一个晶体群有10个锆石测点,这些测点的206Pb/238U年龄加权平均值为(330.5±2.2)Ma,MSWD=0.63;第二个晶体群有12个锆石测点,这些测点的206Pb/238U年龄加权平均值为(339.7±2.2)Ma,MSWD=0.19;第三个晶体群有6个锆石测点,这些测点的206Pb/238U年龄加权平均值为(351.2±3.0)Ma,MSWD=0.77;这代表了该花岗岩体侵位年龄,即为早石炭世花岗岩,而且该花岗岩岩浆可能有两次构造-热事件,每次时间均相差10 Ma左右。
5.2 主量元素化学特征
在研究区取17个样品进行主量元素分析结果见表 2。二长花岗岩SiO2含量在70.15%~ 73.38%,岩石中碱质含量较高,(K2O+Na2O)含量为6.32%~7.88%,且K2O/Na2O均大于1(除YN109-3、YN109-5、YN109- 9外),相对富钾;相对贫TiO2(0.312%~ 0.363%)、MnO(0.022 %~0.055%)和P2O5(0.068%~ 0.09%);岩石中Fe含量较高,Fe2O3T含量在1.94%~ 3.57.%,平均值为2.85%,可能与岩石中含有黑云母有关。
表 2 琼博拉花岗岩主量元素含量(%)及计算结果Table 2. Analytical result of major elements (%) of granites from Qionbola二长花岗岩的A/CNK(Al2O3/(CaO+Na2O+K2O)的摩尔比)变化于0.82~1.03,铝饱和指数图解(Peccerillo and Taylor, 1976)(图 4a)显示,二长花岗岩属于准铝质岩石(除YN108-4为过铝质岩石)。从SiO2-K2O图解(Peccerillo and Taylor, 1976)(图 4b)中可以看出,二长花岗岩样品的投影点落入了高钾钙碱性系列(除YN109-3的投影点落入了钙碱性系列)。从数据(表 2)上看,YN109-3之所以与其他样品不同,是因为其SiO2(73.38%)的含量偏高,K2O(2.23 %)的含量偏低导致的。
图 4 A/CNK-A/NK图解(a)和二长花岗岩SiO2-K2O图解(b)(据Peccerillo and Taylor, 1976)A/CNK = molar [Al2O3/(CaO + Na2O + K2O)],A/NK = molar Al2O3/(Na2O + K2O)Figure 4. A/CNK-A/NK diagram (a) and SiO2-K2O diagram of Monzonitic granite (b) (after Peccerillo and Taylor, 1976)A/CNK = molar [Al2O3/(CaO + Na2O + K2O)], A/NK = molar Al2O3/(Na2O + K2O)5.3 稀土与微量元素地球化学特征
由球粒陨石稀土元素标准化配分曲线(图 5a)和表 3可以看出,琼博拉地区二长花岗岩的稀土含量(∑ REE)在59.63×10-6~100.01×10-6,变化较小;轻重稀土分馏明显(LREE/HREE=5.32~7.58,LaN/YbN=4.21~8.1),轻稀土元素相对富集(∑ LREE=50.19×10-6~87.92×10-6),重稀土元素相对亏损(∑HREE=9.44×10-6~12.08×10-6),岩石中δEu为0.71~0.97,Eu弱异常或不明显。琼博拉花岗岩稀土元素配分模式呈弱右倾型,稀土总量低;轻重稀土分馏较明显,说明其源区可能有石榴石残留;多数样品铕异常不明显,说明岩浆演化过程中不存在斜长石的结晶分离或源区无斜长石的残留。
图 5 琼博拉二长花岗岩稀土元素球粒陨石标准化图解(a)及琼博拉二长花岗岩微量元素原始地幔标准化图解(b)(标准化值据Sun and McDonough, 1989)Figure 5. Chondrite-normalized REE patterns of monzonitic granites from Qiongbola(a); trace element spider diagram of monzoniticgranites from Qiongbola (b)(normalized values after Sun and McDonough, 1989)表 3 琼博拉花岗岩微量元素含量(10-6)Table 3. Analytical result of trace elements (10-6) of granites from Qionbola在原始地幔标准化微量元素蛛网图(图 5b)中,二长花岗岩的微量元素变化特征基本一致,具有相对一致的配分型式。均表现为富集Rb、Th、K、Pb和Sr等大离子亲石元素,相对亏损Nb、Ta、Zr、P和Ti等高场强元素。Nb=4.92×10-6~6.42×10-6,接近大陆岛弧的含量((3.3 ± 1.6)×10-6,McCulloch and Gamble, 1991))。
5.4 全岩Sr-Nb-Pb同位素的特征
琼博拉地区二长花岗岩Sr-Nd同位素组成见表 4,计算时采用的年龄为本文利用LA-ICP- MS锆石U-Pb定年方法获得的二长花岗岩锆石年龄(337.7±3.4)Ma。在计算Nd模式年龄时,采用两阶段模式。所采用的参数见表 4,计算公式引自Li and McCulloch(1996)。
表 4 琼博拉花岗岩Sr和Nd同位素分析结果Table 4. Sr-Nd isotopic compositions of the granites from Qiongbola二长花岗岩的Sr初始比值Isr=0.7050~ 0.7082,平均值为0.7057;143Nd/144Nd值为0.512217~ 0.512254,平均值为0.512236,εNd(t)为0.3~ 1.0,Nd模式年龄为1010~1098 Ma。二长花岗岩的fSm/Nd均为负值,数值介于-0.41~-0.37,表明源区的稀土元素Sm、Nd分馏相对不太明显,说明用上述测试数据计算的钕同位素模式年龄是相对可靠的。
琼博拉二长花岗岩在εSr(t)-εNd(t)(图 6)相关图解(韩吟文等,2003;Janh et al., 1999)中均显示了混合成因的特点。
琼博拉地区二长花岗岩的全岩Pb同位素分析结果见表 5。其现今的全岩Pb同位素组成为:208Pb/ 204Pb=38.908~ 40.228、207Pb/204Pb=15.617~15.66、206Pb/204Pb=18.793~ 20.183。根据二长花岗岩中岩浆锆石的U-Pb定年结果及测定的全岩现今Pb同位素比值和U、Th、Pb含量,计算岩石现今的238U/ 204Pb和232Th/204Pb比值,据此按Pb同位素单阶段演化模型计算岩石的初始Pb同位素比值。结果表明,二长花岗岩计算的初始Pb同位素组成为:(208Pb/204Pb)t=36.1617~38.0538、(207Pb/204Pb)t=15.5458~15.6198、(206Pb/ 204Pb)t=18.0376~18.9538。计算的初始Pb同位素比值和现今的全岩Pb同位素组成之间有较大的差别,这主要与它们具有古老的形成时代和相对较高的Th、U含量相关。在铅构造模式演化图(朱炳泉,1998)(图 7)中,其数据点分布在造山带演化线和地幔演化线之间,反映Pb可能不是单一来源(除YN107-1落在造山带演化线和上地壳演化线之间)。成岩物质来源可能主要由地幔物质和造山带物质提供,混有少量上地壳物质,以造山带Pb为主。
表 5 琼博拉花岗岩Pb同位素分析结果Table 5. Pb isotopic compositions of the granites from Qiongbola6. 讨论
6.1 成因分析
琼博拉地区二长花岗岩的SiO2含量在70.15%~73.38%,岩石中碱质含量较高,相对富钾;A/CNK的值变化于0.82~1.03,为准铝质-弱过铝质岩石,属于钙碱性-高钾钙碱性系列。球粒陨石稀土元素标准化配分曲线表现为右倾斜的V型曲线,Eu呈现弱负异常。二长花岗岩的微量元素变化特征基本一致,具有相对一致的配分型式。均表现为富集Rb、Th、K、Pb和Sr等大离子亲石元素,相对亏损Nb、Ta、Zr、P和Ti等高场强元素。因Rb、Th富集和Eu亏损指示壳源的特征;Zr富集,是地壳物质的指示,贫化是上地幔起源的象征;P富集,起源于富集型地幔未混染的玄武岩,贫化则起源于亏损地幔或地壳岩石;Nb-Ta槽说明与陆壳有密切关系;Ti的习性与Zr相反(Smith,1976;Pearce et al., 1984;Sun and McDonough, 1989;李昌年,1992;林景仟,1994;Rollison H R et al., 2000;郝晓飞等,2014)。这都说明了琼博拉二长花岗岩的母岩浆来源于地幔,后在上升过程中受到了壳源物质的混染。
根据Sr同位素在花岗岩类岩石的成因研究(刘英俊,1987;Hugh and Rollison, 2000;肖庆辉,邓晋福等,2002),可以将琼博拉二长花岗岩的Sr初始值分为两类。低锶花岗岩,87Sr/86Sr初始比值介于0.702~0.706,为玄武岩的初始比值,一般认为是幔源型花岗岩,代表样品为YN107- 1、YN107- 2、YN107-4、YN108-2;中等锶花岗岩,87Sr/86Sr初始比值介于0.706~0.712,主要由于壳幔混熔或下地壳物质部分熔融所致,代表性样品为YN109-9,其87Sr/86Sr初始比值为0.7082。
根据Nd同位素在花岗岩类岩石的成因研究(刘英俊,1987;Hugh and Rollison, 2000;肖庆辉,邓晋福等,2002),琼博拉二长花岗岩的Nd初始值属于εNd(t)>0系列,表明它们来源于亏损地幔,正值越大,表明它们来源于轻稀土亏损愈明显的地幔源区,琼博拉二长花岗岩样品的εNd(t)均大于0,其值介于0.3~ 1.5,平均值为0.64。Nd模式年龄为1010~1098 Ma,指示该二长花岗岩的源区是早石炭世早期与岩浆形成年龄一致的亏损地幔和古老地壳混合源区(徐学义,2010)。
综上所述,该二长花岗岩的Sr、Nd同位素组成暗示该岩石是由地幔源岩浆上侵形成的新生地壳,再经部分熔融形成;εSr(t)-εNd(t)(图 6)相关图解均显示了混合成因的特点;Pb同位素组成(图 7)同样显示了混合成因的特点。因此,琼博拉二长花岗岩是幔源岩浆底侵形成的新生地壳,新生地壳部分熔融的产物。
6.2 构造背景及形成机制
花岗岩类构造环境的判别不仅需要根据其地球化学特征,在更大程度上还需要对岩体自身构造特征及产出区域构造背景等进行多方面的综合研究(王生云,2013;朱志新,2011)。在琼博拉地区二长花岗岩的出露规模相对于火山岩,其总量相对较少,岩体呈岩墙形式产出。前人研究认为,西天山段(塔里木与伊犁—中天山地块)的碰撞起始时间在早石炭世(345 Ma),结束时间为石炭纪末(300 Ma左右)(高俊,2006);西天山在晚石炭世时南、北天山洋盆已闭合,由于板块碰撞形成了碰撞型改造花岗岩(朱志新,2011)。本次研究获得的二长花岗岩的U-Pb年龄为(330.5±2.2)Ma、(339.7±2.2)Ma、(351.2±3.0)Ma三段,属于石炭纪早中期,属于板块碰撞型改造花岗岩。
在花岗岩形成环境的微量元素(Yb+Ta)-Rb和Yb-Ta判别图解(图 8a、b)中样品投影点主要落入火山弧花岗岩区域。而且在Rb/30-Hf-Ta*3构造环境判别图解(图 9)中主要落入火山弧的区域;而在R1-R2构造环境判别图解(图 10)主要落入板块碰撞前花岗岩区和同碰撞花岗岩区。前人研究认为,中亚(型)造山带在古生代时期经历了围绕古陆的向洋的岛弧杂岩的侧向(水平)增生和洋盆闭合后的后碰撞幔源物质底垫的垂向增生两种过程(Han B et al., 1997;洪大卫等,2000;Gao et al., 2002;Jahn.,2004;Zhou et al., 2004;李锦铁等,2006;高俊,2006;唐功建等,2008),南天山洋在早古生代晚期436 Ma已出现大洋俯冲消减作用(Gao et al., 1999;张成立,2007),大部分学者认为南天山洋在早石炭世闭合(Allen et al., 1993;Carroll et al., 1995;Coleman,1989;Gao et al., 1998;高俊等,2006),少部分学者认为其在石炭纪之前(Xia et al., 2004)或三叠纪(Zhang et al., 2007a, 2007b)闭合。
图 8 二长花岗岩(Yb+Ta)-Rb(a)和Yb-Ta(b)构造环境判别图解(据Pearce, 1984)Syn-COLG-同碰撞花岗岩;WPG-板内花岗岩;VAG-火山弧花岗岩;ORG-大洋脊花岗岩Figure 8. (Yb+Ta)-Rb(a) and Yb-Ta(b) diagram for discrimination of tectonic environment of monzonitic granites from Qiongbola (after Pearce, 1984)Syn-COLG-collisional granite; WPG-Intraplate granite; VAG-Volcanic arc granite; ORG-Oceanic ridge granite图 9 二长花岗岩Rb/30-Hf-Ta*3构造环境判别图解(据Harris et al., 1986)Figure 9. Rb/30-Hf-Ta*3 diagram for discrimination of tectonic environment of monzonitic granites(after Harris et al., 1986)图 10 二长花岗岩R1-R2构造环境判别图解(据Bechelor., 1985)Figure 10. R1-R2 diagram for discrimination of tectonic environment of monzonitic granites.(after Bechelor, 1985)因此,琼博拉二长花岗岩属于板块的同碰撞构造环境。微量元素构造环境判别落入火山弧花岗岩,是由于板块碰撞前大洋俯冲消减作用使之前增生的岛弧杂岩重熔;后在板块碰撞阶段,幔源岩浆在上升过程中受到了少量重熔的下地壳和拆沉重熔的岛弧杂岩混染形成混合岩浆;最后侵位形成二长花岗岩。
6.3 二长花岗岩与铀源的关系
研究区二长花岗岩的侵位年龄分为3组:(330.5±2.2)Ma、(339.7±2.2)Ma、(351.2±3.0)Ma。而在伊犁盆地511矿区,从含矿砂体精选出的锆石,其U-Pb同位素等时线年龄为(308±26)Ma(夏毓亮,2002),与研究区的最晚期的花岗岩年龄一致,从而肯定二长花岗岩是该含矿砂体的部分物质来源。
7. 结论
(1)琼博拉地区二长花岗岩LA-ICP-MS锆石U-Pb测年结果其侵位年龄分为3组:(330.5±2.2) Ma、(339.7±2.2)Ma、(351.2±3.0)Ma,为早中石炭世花岗岩,属于板块的同碰撞构造环境,为伊犁盆地511砂岩型铀矿床含矿砂体的部分物质来源。
(2)琼博拉二长花岗岩中SiO2含量70.15%~ 73.38%,碱质含量较高,相对富钾;A/CNK的值变化于0.82~1.03,为准铝质-弱过铝质岩石,属于钙碱性-高钾钙碱性系列;富集轻稀土和Rb、Th、K、Pb和Sr等大离子亲石元素,相对亏损Nb、Ta、Zr、P和Ti等高场强元素;初始锶同位素比值为0.7050~ 0.7082,143Nd/144Nd值为0.512217~ 0.512254,εNd(t)为0.3~ 1.0,Nd模式年龄为1010~1098 Ma。分析表明二长花岗岩具有壳幔混染的特点。
(3)伊犁盆地南缘琼博拉二长花岗岩可能是在南天山洋和北天山洋闭合后,在塔里木与伊犁—中天山地块同碰撞的环境下,岩石圈地幔加厚,使减压熔融形成的幔源岩浆发生底侵,为陆壳(哈萨克斯坦—伊犁板块)熔融提供热量,在上升过程中形成新生地壳,并且经过部分熔融形成混合岩浆,沿深断裂上升、侵位冷凝、结晶而成。
致谢: 成文过程中得益于张松、王生云高级工程师和东前博士后提出的宝贵意见;数据测试工作得到了核工业北京地质研究院分析测试中心、西北大学地质研究实验室的大力帮助,在此一并致谢。 -
图 3 样品G26锆石330.5 Ma左右的晶体群的测点位置和LA-ICP MS U-Pb同位素谐和图(a)、样品G26锆石339.7 Ma左右的晶体群的测点位置和LA-ICP MS U-Pb同位素谐和图(b)及样品G26锆石351.2 Ma左右的晶体群的测点位置和LA-ICP MS U-Pb同位素谐和图(c)
Figure 3. Dating spots and zircon LA-ICP MS U-Pb isotopic concordia plots for the 330.5 Ma zircons of sample G26(a); Dating spots and zircon LA-ICP MS U-Pb isotopic concordia plots for the 339.7 Ma zircons of sample G26 (b); Dating spots and zircon LAICP MS U-Pb isotopic concordia plots for the 351.2 Ma zircons of sample G26(c)
图 4 A/CNK-A/NK图解(a)和二长花岗岩SiO2-K2O图解(b)(据Peccerillo and Taylor, 1976)
A/CNK = molar [Al2O3/(CaO + Na2O + K2O)],A/NK = molar Al2O3/(Na2O + K2O)
Figure 4. A/CNK-A/NK diagram (a) and SiO2-K2O diagram of Monzonitic granite (b) (after Peccerillo and Taylor, 1976)
A/CNK = molar [Al2O3/(CaO + Na2O + K2O)], A/NK = molar Al2O3/(Na2O + K2O)
图 5 琼博拉二长花岗岩稀土元素球粒陨石标准化图解(a)及琼博拉二长花岗岩微量元素原始地幔标准化图解(b)
(标准化值据Sun and McDonough, 1989)
Figure 5. Chondrite-normalized REE patterns of monzonitic granites from Qiongbola(a); trace element spider diagram of monzonitic
granites from Qiongbola (b)(normalized values after Sun and McDonough, 1989)
图 8 二长花岗岩(Yb+Ta)-Rb(a)和Yb-Ta(b)构造环境判别图解(据Pearce, 1984)
Syn-COLG-同碰撞花岗岩;WPG-板内花岗岩;VAG-火山弧花岗岩;ORG-大洋脊花岗岩
Figure 8. (Yb+Ta)-Rb(a) and Yb-Ta(b) diagram for discrimination of tectonic environment of monzonitic granites from Qiongbola (after Pearce, 1984)
Syn-COLG-collisional granite; WPG-Intraplate granite; VAG-Volcanic arc granite; ORG-Oceanic ridge granite
图 9 二长花岗岩Rb/30-Hf-Ta*3构造环境判别图解(据Harris et al., 1986)
Figure 9. Rb/30-Hf-Ta*3 diagram for discrimination of tectonic environment of monzonitic granites(after Harris et al., 1986)
图 10 二长花岗岩R1-R2构造环境判别图解(据Bechelor., 1985)
Figure 10. R1-R2 diagram for discrimination of tectonic environment of monzonitic granites.(after Bechelor, 1985)
表 1 琼博拉地区二长花岗岩LA-ICP-MS锆石U-Pb年龄测定结果(表分为3段,年龄从小到大排列,分别对应图 3a、图 3b和图 3c的锆石测点)
Table 1 LA-ICP-MS U-Pb data of the monzonitic granite from Qiongbola area
表 2 琼博拉花岗岩主量元素含量(%)及计算结果
Table 2 Analytical result of major elements (%) of granites from Qionbola
表 3 琼博拉花岗岩微量元素含量(10-6)
Table 3 Analytical result of trace elements (10-6) of granites from Qionbola
表 4 琼博拉花岗岩Sr和Nd同位素分析结果
Table 4 Sr-Nd isotopic compositions of the granites from Qiongbola
表 5 琼博拉花岗岩Pb同位素分析结果
Table 5 Pb isotopic compositions of the granites from Qiongbola
-
Allen M B, Windley B F, Zhang C. 1993. Palaeozoic collisional tectonics and magmatism of the Chinese Tien Shan, central Asia[J]. Tectonophysics, 220(1/4):89-115. doi: 10.1007%2FBF00210554.pdf
Bechelor R A, Bowden P. 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chemical Geology, 48(1):43-55. http://www.sciepub.com/reference/48934
Belousova E A, Griffin W, O'Reilly S Y, Fisher N. 2002. Igneous zircon:Trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 143(5):602-622. doi: 10.1007/s00410-002-0364-7
Carroll A R, Graham S A, Hendrix M S, Ying D, Zhou D. 1995. Late Paleozoic tectonic amalgamation of northwestern China:Sedimentary record of the northern Tarim, northwestern Turpan, and southern Junggar basins[J]. Geological Society of America Bulletin, 107(5):571-594. doi: 10.1130/0016-7606(1995)107<0571:LPTAON>2.3.CO;2
Che Zicheng, Liu Hongfu, Liu Liang, Luo Jin-mei. 1994. Formation and Evolution of the Middle Tianshan Mountain Orogenic Belt[M]. Beijing:Geological Publishing House (in Chinese with English abstract).
Chen Daisheng, Wang Ruiying, Li Shengxiang, Zhang Kefang. 1994. Metallogenic Geologic Conditions and Prospecting Direcion of Sandstone Type Uranium Mineralizations in Yili Basin of Xinjiang[R]. China Nuclear Science & Technology Report, S1: 1-13 (in Chinese with English abstract).
Chen Daisheng, Wang Ruiying, Li Shengxiang. 1997. Metallogenic medel of the sandstone-type Uranium deposits in interlayer oxidation zone of Yili Basin[J]. Uranium Geology, 13(6):327-335 (in Chinese with English abstract). https://www.deepdyve.com/lp/springer-journals/basical-characteristics-of-fluid-geologic-process-of-interlayer-0mvGJpCAfg
Chen Zhaobo, Li Shengxiang, Cai Yuqi, Chen Daisheng. 2002. Geologic evolution and Uranium metallogenic regularity in Yili Basin[J]. Mineral Deposits, 21(S1):849-852 (in Chinese with English abstract).
Cheng Chunhua, Zhang Fangrong, Yu Quan, Lou Fasheng. 2010. The tectonic setting of volcanic rocks for Dahalajunshan Formation in Wusun mountain region, West Tianshan Mountain[J]. Journal of East China Institute of Technology (Natural Science), 33(1):22-28(in Chinese with English abstract). https://www.researchgate.net/scientific-contributions/2103155295_Zuopeng_Wang
Crofu F, Hanchar J M, Hoskin P W O, Kinny P. 2003. Atlas of zircon textures[J]. Reviews in Mineralogy and Geochemistry, 53:469-495. doi: 10.2113/0530469
Gao J, Li M S, Tang Y Q, He G Q. 1998. Paleozoic tectonic evolution of the Tianshan Orogen, northwestern China[J]. Tectonophysics, 287(1/4):213-231. https://www.researchgate.net/publication/321652020_Early_Paleozoic_volcanic_rocks_with_VMS_mineralization_from_eastern_Tianshan_Orogen_Implication_for_tectonic_evolution
Gao Jun, Long Lingli, Qian Qing, Huang Dezhi, Su Wen, Klemd R. 2006. South Tianshan:A Late Paleozoic or a Triassic orogen?[J]. Acta Petrologica Sinica, 22(5):1049-1061 (in Chinese with English abstract). https://www.researchgate.net/publication/259241059_South_Tianshan_a_Late_Paleozoic_or_a_Triassic_Orogen
Gao J, Xiao W, Li J, Han B, Gao Z and Wang J. 2002. Central-Asia type Orogenesis and Metallogenesis in western China[C]//Abstracts of IGCP 420 Protect workshop, 39.
Gao J, Long L L, Klemd R, Qian Q, Liu D Y, Xiong X M, Su W, Liu W, Wang Y T, Yang F Q. 2009. Tectonic evolution of the South Tianshan orogen and adjacent regions, NW China:Geochemical and age constraints of granitoid rocks[J]. International Journal of Earth Sciences, 98(6), 1221-1238. doi: 10.1007/s00531-008-0370-8
Gao S, Ling W L, Qiu Y M, Lian Z, Hartmann G, Simon K. 1999. Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze craton:Evidengce for cratonic evolution and redistribution of REE during crustal anatexis[J]. Geochimica et Cosmochimica Acta, 63(13/14):2071-2088. https://www.deepdyve.com/lp/elsevier/amalgamation-between-the-yangtze-and-cathaysia-blocks-in-south-china-oFZd0hGcJY
Han Baofu, He Guoqi, Wu Tairan, Li Huimin. 2004. Zircon U-Pb dating and geochemical features of early Paleozoic granites from Tianshan, Xinjiang:Implications for tectonic evolution[J]. Xinjiang Geology, 22(1):4-11 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S0024493718302160
Han B, Wang S, Jahn B M, Hong D, Kagami H, Sun Y. 1997. Depleted-mantle source for the Ulungur River A-type granites from North Xinjiang, China:Geochemistry and Nd-Sr isotopic evidence, and implications for Phanerozoic crustal growth[J]. Chemical Geology, 138(3/4):135-159. https://www.deepdyve.com/lp/elsevier/depleted-mantle-source-for-the-ulungur-river-a-type-granites-from-0xE0Pmw0M8
Han Yinwen, Ma Zhendong, Zhang Hongfei, Zhang Benren, Li Fanglin, Gao Shan, Bao Zhengyu. 2003. Geochemistry[M]. Beijing:Geological Publishing House (in Chinese).
Hao Jipeng. 1991. Permian sedimentary facies and palaeogeography in Ili Basin[J]. Xinjiang Petroleum Geology, 12(3):190-197 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDLX200804004.htm
Hao Xiaofei, Sun Mingqun, Song Hairui. 2014. The analysis of the magmatic activities and dynamic environment in Mesozoic of five bifurcated channe[C]//Progress Report on China Nuclear & Technology, Vol. 3, Part 1: Uranium Geology. Beijing: China Atomic Energy Press, 234-241 (in Chinese with English abstract).
Harris N B W, Pearce J A, Tindle A G. 1986. Geochemical characteristics of collision-zone magmatim, collision tectonics[J]. Geological Society, London, Special Publications, 19(1):67-81. doi: 10.1144/GSL.SP.1986.019.01.04
He Guoqi, Zhu Yongfeng. 2006. Comparative study of the geology and mineral resources in Xinjiang, China, and its adjacent regions[J]. Geology in China, 33(3):451-460 (in Chinese with English abstract).
Hong Dawei, Wang Shiguang, Xie Xilin, Zhang Jisheng. 2000. Genesis of positive σ (Nd, t) granitoids in the Da Hinggan Mts. -Mongolia orogenic belt and growth continental crust[J]. Earth Science Frontiers, 7(2):441-456 (in Chinese with English abstract).
Huang He, Zhang Zhaochong, Zhang Dongyang, Du Hongxing, Ma Letian, Kang Jianli, Xue Chunji. 2011. Petrogenesis of late Carboniferous to early Permian granitoid plutons in the Chinese South Tianshan:Implications for crustal accretion[J]. Acta Geologica Sinica, 85(8):1305-1333 (in Chinese with English abstract).
Rollison H R. 2000. Using Geochemical Data: Evaluation, Presentation, Interpretation[M]. (tr. by Yang Xueming, Yang Xiaoyong, Chen Shuangxi). Hefei: University of Science & Technology China Press (in Chinese).
Jahn B M, Wu F Y, Lo C H, Tsai C H. 1999. Crust-mantle interaction induced by deep subduction of the continental crust:Geochemical and Sr-Nd isotopic evidence from post-collisional maficultramafic intrusions of the northern Dabie complex, central China[J]. Chemical Geology, 157(1/2):119-146. http://www.oalib.com/references/19194781
Jahn B M. 2004. Phanerozoic continental growth in Central Asia[J]. Journal of Asian Earth Sciences, 23(5):599-603. doi: 10.1016/S1367-9120(03)00124-X
Koschek G. 1993. Origin and significance of the SEM cathodoluminescence from zircon[J]. Journal of Microscopy, 171(3):223-232. doi: 10.1111/jmi.1993.171.issue-3
Li Changmin. 2009. A review on the minerageny and situ microanalytical dating techniques of Zircons[J]. Geological Survey and Research, 33(3):161-174 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhwjyjjz200903001
Li Changnian. 1992. Petrologyof the Trace Elements in Igneous Rock[M]. Beijing:China University of Geosciences Press(in Chinese with English abstract).
Li Jinyi, He Guoqi, Xu Xin, Li Huaqin, Sun Guihua, Yang Tiannan, Gao Liming, Zhu Zhixin. 2006. Crustal tectonic framework of northern Xinjiang and adjacent regions and its formation[J]. Acta Geologica Sinica, 80(1):145-168 (in Chinese with English abstract). doi: 10.1007%2Fs11434-007-6010-z
Li Shengxiang, Cai Yuqi, Zheng Enjiu, Han Xiaozhong, Wang Baoqun, Li Xigen. 2005. The mineralization characteristics and the prospective prediction of the in-situ leachable sandstone-type Uranium deposit of Middle Jurassic Series Xishanyao Formation on the south rim of Yili Basin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 24(S1):251-252 (in Chinese with English abstract).
Li Shengxiang, Ou Guangxi, Han Xiaozhong, Cai Yuqi, Zheng Enjiu, Li Xigen. 2006. Study on the relationship between oil-gas and ore-formation of the in-situ leachable sandstone-type Uranium deposit in Yili Basin[J]. Acta Geologica Sinica, 80(1):112-118 (in Chinese with English abstract). https://www.deepdyve.com/lp/elsevier/basin-related-uranium-mineral-systems-in-australia-a-review-of-s0iQMx9sMn
Li X H, McCulloch M T. 1996. Secular variation in the Nd isotopic composition of Neoproterozoic sediments from the southern margin of Yangze Block:Evidence for a Proterozoic continental collision in southease China[J]. Precambrian Research, 76(1/2):67-76.
Li Yongjun, Li Zhucang, Tong Lili, Gao Zhanhua, Tong Liming. 2010. Revisit the constraints on the closure of the Tianshan ancient oceanic basin:New evidence from Yining block of the Carboniferous[J]. Acta Petrologica Sinica, 26(10):2905-2912 (in Chinese with English abstract). http://www.earth.sinica.edu.tw/res_publica_e.php/images/papers/images/papers/1623.pdf
Li Zhucang, Li Yongjun, Li Jinghong, Luan Xindong, Guo Wenjie. 2006. Geochemical characteristics of the Dahalajunshan Formation volcanic rocks and their implications on the tectonic setting in Awulale area[J]. Xinjiang Geology, 24(2):120-124 (in Chinese with English abstract). http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_xjdz200602005
Liao Shinan. 1992. A general review for formation and evolution of Ili Basin[J]. Xinjiang Petroleum Geology, 13(2):108-115 (in Chinese with English abstract). https://www.ldeo.columbia.edu/~polsen/nbcp/breakupintro.html
Lin Jingqian. 1994. Petrochemistry[M]. Beijing:Geological Publishing House (in Chinese).
Liu Hongxu, Zhang Xiao, Ding Bo, Pan Chengyu. 2015. Metallogenic model and prospecting oreintaion of sandstone type uranium deposits in the southern margin of Yili Basin[J]. Uranium Geology, 31(Supp.):198-205 (in Chinese with English abstract). doi: 10.1007%2F3-540-27946-6_77.pdf
Liu Yingjun, Cao Liming. 1987. Introduction to geochemistry of Elements[M]. Beijing:Geological Publishing House (in Chinese).
Lu Yuanfa. 2004. GeoKit:A geochemical toolkit for Microsoft Excel[J]. Geochimica, 33(5):459-464 (in Chinese with English abstract). https://www.researchgate.net/publication/304335514_Geokit_-_A_geochemical_toolkit_for_Microsoft_Excel
McCulloch M, Gamble J. 1991. Geochemical and geodynamical constraints on subduction zone magmatism[J]. Earth and Planetary Science Letters, 102(3/4):358-374. doi: 10.1007%2FBF01226565
Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams forthe tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25(4):956-983. doi: 10.1093/petrology/25.4.956
Peccerillo R, Taylor S R. 1976. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 58(1):63-81. doi: 10.1007/BF00384745
Ru Yanjiao, Xu Xueyi, Li Zhipei, Chen Juanlu, Bai Jianke, Li Ting. 2012. LA-ICP-MS zircon U-Pb age and tectonic background of the Dahalajunshan Formation volcanic rocks in Wusunshan area, West Tianshan Mountains[J]. Geological Bulletin of China, 31(1):50-62 (in Chinese with English abstract).
Smith R E, Smith S E. 1976. Comment on the use of Ti, Zr, Y, Sr, K, P and Nb in classification of basaltic magmas[J]. Earth and Planetary Science Letters, 32(2):114-120. doi: 10.1016/0012-821X(76)90049-2
Shao Tiequan, Shi Ying, Jin Hong, Song Yang, Zhu Zhixin, Wang Kezhuo, Zhang Jiandong, Xu Da. 2006. Volcanic rock petrochemical characteristics of the Dahalajunshan Formation in the western Tianshan, Xinjiang and their geological significance[J]. Xinjiang Geology, 24(3):218-222 (in Chinese with English abstract). https://www.researchgate.net/profile/Yan-Jing_Chen
Song Biao, Zhang Yuhai, Wan Yusheng, Jian Ping. 2002. Mount making and procedure of the SHRIMP dating[J]. Geological Review, 48 (supp.):26-30 (in Chinese with English abstract). http://www.anu.edu.au/CSEM/machines/SHRIMP.htm
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J]. Geological Society London Special Publications, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19
Tang Gongjian, Chen Haihong, Wang Qiang, Zhao Zhenhua, Derek A. Wyman, Jiang Ziqi, Jia Xiaohui. 2008. Geochronological age and tectonic background of the Dabate A-type granite pluton in the west Tianshan[J]. Acta Petrologica Sinica, 24(5):947-958 (in Chinese with English abstract). http://sydney.edu.au/science/people/derek.wyman.php
Wang Shengyun, Fan Honghai, Chen Jinyong, Gu Dazhao, Chen Donghuan, Gao Yang, Nie Jiangtao. 2013. Petrogenesis and tectonic setting of porphyritic granites in Gaudeanmus area, Namibia[J]. Global Geology, 32(4):773-782 (in Chinese with English abstract).
Wu Yuanbao, Zheng Yongfei. 2004. Study on the zircon genetic mineralogy and its constraint to U-Pb age interpretation[J]. Chinese Science Bulletin, 49(16):1589-1604 (in Chinese). https://www.sciencedirect.com/science/article/pii/S1342937X18301394
Xia Linqi, Xia Zuchun, Xu Xueyi, Li Xiangmin, Ma Zhongping, Wang Lishe. 2004. Carboniferous Tianshan igneous megaprovince and mantle plume[J]. Geological Bulletin of China, 23(9/10):903-910(in Chinese with Englishi abstract). https://www.researchgate.net/publication/272791292_volcanic_rocks_in_western_Tianshan
Xia Yuliang, Lin Jinrong, Hou Yanxian, Liu Hanbin, Fan Guang. 2002. Characteristics of isotope geology of sandstone-type uranium deposit in Yili basin, Xinjiang[J]. Uranium Geology, 18(3):150-155 (in Chinese with English abstract). https://www.researchgate.net/publication/239408095_The_different_characteristics_and_geological_significance_of_reduction_alteration_of_sandstone-type_uranium_deposits_in_Northwest_Region_of_China
Xiao Qinghui, Deng Jinfu, Ma Daquan, Hong Dawei, Mo Xuanxue, Lu Xinxiang, Li Zhichang, Wang Xiongwu, Ma Changqian, Wu Fuyuan, Luo Zhaohua, Wang Tao. 2002. Thought and Method on the Granitoid Research[M]. Beijing:Geological Publishing House(in Chinese).
Xiong Shaoyun, Yu Chaofeng, Li Yuwen, Huang Ling. 2011. Sedimentary characteristics and evolution of the Lower Carboniferous Akeshake Formation in the Yili Basin[J]. Acta Petrolei Sinica, 32(5):797-805 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201105009
Xu Xueyi, Ma Zhongping, Xia Zuchun, Xia Linqi, Li Xiangmin, Wang Lishe. 2005. Discussion of the sources and characteristics on Sr, Nd, Pb isotopes of the Carboniferous to Permian post-collision granites from Tianshan[J]. Northwestern Geology, 38(2):1-18 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdz200502001
Xu Xueyi, Wang Hongliang, Ma Guolin, Li Ping, Chen Juanlu, Li Ting. 2010. Geochronology and Hf isotope characteristics of the Paleozoic granite in Nalati area, West Tianshan Mountains[J]. Acta Petrologica et Mineralogica, 29(6):691-706 (in Chinese with English abstract). https://www.deepdyve.com/lp/elsevier/geochemistry-and-geochronology-of-paleozoic-intrusions-in-the-nalati-GWOBAhiu7I
Zartman R E, Doe B R. 1981. Plumbotectonics-the model[J]. Tectonophysics, 75(1/2):135-162. http://www.academia.edu/30504851/Plumbotectonics_the_model
Zhang Chengli, Zhou Dingwu, Wang Juli, Wang Runsan. 2007. Geochronology, geochemistry and Sr-Nd isotopic composition and genesis implications of Huangjianshishan granite intrusion in Kumishi area of southern Tianshan[J]. Acta Petrologica Sinica, 23(8):1821-1829 (in Chinese with English abstract).
Zhang Guowei, Li Sanzhong, Liu Junxia, Teng Zhihong, Jin Hailong, Li Wei, Huang Xianxiong, Wu Yahong. 1999. Structural feature and evolution of Yili Basin, Xinjiang[J]. Earth Science Frontiers, 6(4):203-215 (in Chinese with English abstract).
Zhang Jiangsu, Li Zhucang. 2006. Tectonic setting of the Dahalajunshan Formation volcanic rocks in Awulale of West Tianshan[J]. Gansu Geology, 15(2):10-14 (in Chinese with English abstract).
Zhang Jindai, Xu Gaozhong, Lin Jinrong, Peng Yunbiao, Wang Guo. 2010. The implication of six kinds of new sandstone-type uranium deposits to uranium resources potential in North China[J]. Geology in China, 37(5):1434-1449 (in Chinese with English abstract). https://www.researchgate.net/publication/264352351_Uranium_Metallogenic_Regionalization_and_Resource_Potential_in_China
Zhang L F, Ai Y L, Li X P, Rubatto D, Song B, Williams S, Song S G, Ellis D, Liou J G. 2007a. Triassic collision of western Tianshan orogenic belt, China:Evidengce from SHRIMP U-Pb dating of zircon from HP/UHP eclogitic rocks[J]. Lithos, 96(1/2):266-280. https://www.sciencedirect.com/journal/lithos/vol/96/issue/1
Zhang L F, Ai Y L, Song S G, Liou J, Wei C J. 2007b. A brief review of UHP meta-ophiolitic rocks, southwestern Tianshan, western China[J]. International Geology Review, 49(9):811-823. doi: 10.2747/0020-6814.49.9.811
Zhang Ligang, Xing Fengming. 1993. Lead isotope compisitions of Mesozonic granitoids and Lead isotopic provinces from Anhui Province[J]. Acta Petrologica Sinica, 9(3):254-257 (in Chinese with English abstract). http://www.oalib.com/paper/1472372
Zhang Liangchen, Wu Naiyuan. 1985. The geotectonic and its evolution of Tianshan[J]. Xinjiang Geology, 3(3):1-14 (in Chinese with English abstract). https://www.colorado.edu/GeolSci/courses/GEOL5700-9/pdf/Spring07/AAPGCedielNorthernAndes.pdf
Zhou M F, Lesher C M, Yang Z X, Li J W, Sun M. 2004. Geochemistry and petrogenesis of 270 Ma Ni-Cu-(PGE) sulfide-bearing mafic intrusions in the Huangshan district, Eastern Xinjiang, Northwestern China:Implications for the tectonic evolution of the Cental Asian orogenic belt[J]. Chemical Geology, 209(3/4):233-257. doi: 10.1007/978-3-642-54262-6_2
Zhu Bingquan. 1998. Theory and Application of the Isotope Systematics in Geosciences and the Evolution of the Continental Crust and Mantle of China[M]. Beijing:Science Press (in Chinese).
Zhu Yongfeng, Zhang Lifei, Gu Libing, Guo Xuan, Zhou Jing. 2005. Study on SHRIMP Chronology of the Carboniferous volcanic rocks in West Tianshan and its geochemistry of trace elements[J]. Chinese Science Bulletin, 50(18):2004-2014 (in Chinese with English abstract). Zhu Zhixin, Dong Lianhui, Liu Shucong, Li Jintie, Wang Kezhuo, Zhao Tongyang, Li Ping, Jin Liuyuan. 2012. Volcanic rock geological characteristics and tectonic significance of the Late Paleozoic Yili Block in the western Tianshan, Xinjiang[J]. Xinjiang Geology, 30(3):258-263 (in Chinese with English abstract). https://www.researchgate.net/publication/248432571_Geochemistry_and_zircon_SHRIMP_dating_on_the_Late_Paleozoic_volcanic_rocks_in_west_Tianshan_Mountains_Central_Asia_Xinjiang
Zhu Zhixin, Li Jintie, Dong Lianhui, Zhang Xiaofan, Hu Jianwei, Wang Kezhuo. 2008. The age determination of Late Carboniferous intrusions in Mangqisu region and its constraints to the closure of oceanic basin in South Tianshan, Xinjiang[J]. Acta Petrologica Sinica, 28(12):2761-2766 (in Chinese with English abstract). http://www.oalib.com/paper/1472525
Zhu Zhixin, Li Jintie, Dong Lianhui, Wang Kezhuo, Zhang Xiaofan, Xu Shiqi. 2011. Geological characteristics and tectonic significance of Paleozoic intrusive rocks in Western Tianshan of Xinjiang Province[J]. Earth Science Frontiers, 18(2):170-179 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJDI201303014.htm
Zhu Zhixin, Wang Kezhuo, Zheng Yujie, Sun Guihua, Zhao Chao, Li Yaping. 2006. Zircon SHRIMP dating of Silurian and Devonian granitic intrusions in the southern Yili Block, Xinjiang and preliminary discussion on their tectonic setting[J]. Acta Petrologica Sinica, 22(5):1193-1200 (in Chinese with English abstract). http://www.oalib.com/paper/1471627
Zuo Guochao, Zhang Zuoheng, Wang Zhiliang, Liu Min, Wang Longsheng. 2008. Tectonic division, Stratigraphical stystem and the evolution of West Tianshan Mountains, Xinjiang[J]. Geological Review, 54(6):748-767 (in Chinese with English abstract). https://www.researchgate.net/publication/282697465_Mineralization_and_fluid_geochemistry_of_dabate_prophyry_copper_deposit_Western_Tianshan_in_Xinjiang
车自成, 刘洪福, 刘良, 罗金梅. 1994.中天山造山带的形成与演化[M].北京:地质出版社. 陈戴生, 王瑞英, 李胜祥, 张克方. 1994. 新疆伊犁盆地砂岩型铀矿成矿地质条件及找矿方向研究[R]. 中国核科技报告, S1: 1-13. 陈戴生, 王瑞英, 李胜祥. 1997.伊犁盆地层间氧化带砂岩型铀矿成矿模式[J].铀矿地质, 13(6):327-335. http://d.old.wanfangdata.com.cn/Conference/28231 陈肇博, 李胜祥, 蔡煜琦, 陈戴生. 2002.伊犁盆地地质演化与铀成矿规律[J].矿床地质, 21(S1):849-852. http://d.old.wanfangdata.com.cn/Conference/4400179 程春华, 张芳荣, 余泉, 楼法生. 2010.西天山乌孙山地区大哈拉军山组火山岩形成的构造背景[J].东华理工大学学报(自然科学版), 33(1):22-28. http://d.old.wanfangdata.com.cn/Periodical/hddzxyxb201001004 高俊, 龙灵利, 钱青, 黄德志, 苏文, Klemd R. 2006.南天山:晚古生代还是三叠纪碰撞造山带?[J].岩石学报, 22(5):1049-1061. 韩宝福, 何国琦, 吴泰然, 李惠民. 2004.天山早古生代花岗岩锆石U-Pb定年、岩石地球化学特征及其大地构造意义[J].新疆地质, 22(1):4-11. http://d.old.wanfangdata.com.cn/Periodical/xjdz200401002 韩吟文, 马振东, 张宏飞, 张本仁, 李方林, 高山, 鲍征宇. 2003.地球化学[M].北京:地质出版社. 郝继鹏. 1991.伊犁盆地二叠纪沉积相及古地理特征[J].新疆石油地质, 12(3):190-197. http://d.old.wanfangdata.com.cn/Thesis/Y1453432 郝晓飞, 孙明坤, 宋海瑞. 2014. 五岔沟-天池中生代岩浆活动及其动力学环境浅析[C]//中国核科学技术进展报告第3卷第1册. 北京: 中国原子能出版社, 234-241. 何国琦, 朱永峰. 2006.中国新疆及其邻区地质矿产对比研究[J].中国地质, 33(3):451-460. http://geochina.cgs.gov.cn/ch/reader/view_abstract.aspx?file_no=20060301&flag=1 洪大卫, 王式洸, 谢锡林, 张季生. 2000.兴蒙造山带正εNd(t)值花岗岩的成因和大陆地壳生长[J].地学前缘, 7(2):441-456. 黄河, 张招崇, 张东阳, 杜红星, 马乐天, 康建丽, 薛春纪. 2011.中国南天山晚石炭世-早二叠世花岗质侵入岩的岩石成因与地壳增生[J].地质学报, 85(8):1305-1333. 李长民. 2009.锆石成因矿物学与锆石微区定年综述.地质调查与研究[J]. 33(3):161-174. http://d.old.wanfangdata.com.cn/Periodical/qhwjyjjz200903001 李昌年. 1992.火成岩微量元素地球化学[M].北京:中国地质大学出版社. 李锦轶, 何国琦, 徐新, 李华芹, 孙桂华, 杨天南, 高立明, 朱志新. 2006.新疆北部及邻区地壳构造格架及其形成过程的初步探讨[J].地质学报, 80(l):145-168. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200601017 李胜祥, 蔡煜琦, 郑恩玖, 韩效忠, 王保群, 李细根. 2005.伊犁盆地南缘中侏罗统西山窑组地浸砂岩型铀矿化特征及远景预测[J].矿物岩石地球化学通报, 24(Suppl.):251-252. 李胜祥, 欧光习, 韩效忠, 蔡煜琦, 郑恩玖, 李细根. 2006.伊犁盆地油气与地浸砂岩型铀矿成矿关系研究[J].地质学报, 80(1):112-118. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200601012 李永军, 李注苍, 佟丽莉, 高占华, 佟黎明. 2010.论天山古洋盆关闭的地质时限:来自伊宁地块石炭系的新证据[J].岩石学报, 26(10):2905-2912. 李注苍, 李永军, 李景宏, 栾新东, 郭文杰. 2006.西天山阿吾拉勒一带大哈拉军山组火山岩地球化学特征及构造环境分析[J].新疆地质, 24(2):120-124. http://d.old.wanfangdata.com.cn/Periodical/xjdz200602005 廖世南. 1992.伊犁盆地生成发展概述[J].新疆石油地质, 13(2):108-115. 林景仟. 1994.岩石化学[M].北京:地质出版社. 刘红旭, 张晓, 丁波, 潘澄雨. 2015.伊犁盆地南缘砂岩型铀矿成矿模式与找矿方向[J].铀矿地质, 31(Suppl.):198-205. http://d.old.wanfangdata.com.cn/Periodical/ykdz2015z1008 刘英俊, 曹励明. 1987.元素地球化学导论[M].北京:地质出版社. 路远发. 2004. GeoKit:一个用VBA构建的地球化学工具软件包[J].地球化学, 33(5):459-464. Rollison H R. 2000. 岩石地球化学[M]. 杨学明, 杨晓勇, 陈双喜译. 合肥: 中国科学技术大学出版社. 茹艳娇, 徐学义, 李智佩, 陈隽璐, 白建科, 李婷. 2012.西天山乌孙山地区大哈拉军山组火山岩LA-ICP-MS锆石U-Pb年龄及其构造环境[J].地质通报, 31(1):50-62. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201201006 邵铁全, 石莹, 靳红, 宋杨, 朱志新, 王克卓, 张建东, 徐达. 2006.新疆西天山大哈拉军山组火山岩岩石化学特征及地质意义[J].新疆地质, 24(3):218-222. http://d.old.wanfangdata.com.cn/Periodical/xjdz200603002 宋彪, 张玉海, 万渝生, 简平. 2002.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J].地质论评, 48(Supp.):26-30. http://d.old.wanfangdata.com.cn/Periodical/OA000005931 唐功建, 陈海红, 王强, 赵振华, Wyman D A, 姜子琦, 贾小辉. 2008.西天山达巴特A型花岗岩的形成时代与构造背景[J].岩石学报, 24(5):947-958. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200805002 王生云, 范洪海, 陈金勇, 顾大钊, 陈东欢, 高阳, 聂江涛. 2013.纳米比亚欢乐谷地区斑状花岗岩成因及构造背景[J].世界地质, 32 (4):773-782. http://d.old.wanfangdata.com.cn/Periodical/sjdz201304016 吴元保, 郑永飞. 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 夏林圻, 夏祖春, 徐学义, 李向民, 马中平, 王立社. 2004.天山石炭纪大火成岩省与地幔柱[J].地质通报, 23(9/10):903-910. http://d.old.wanfangdata.com.cn/Periodical/zgqydz200409012 夏毓亮, 林锦荣, 侯艳先, 刘汉彬, 范光. 2002.伊犁盆地砂岩型铀成矿同位素地质特征.铀矿地质, 18(3):150-155. http://d.old.wanfangdata.com.cn/Periodical/ykdz200203004 肖庆辉, 邓晋福, 马大铨, 洪大卫, 莫宣学, 卢新祥, 李志昌, 汪雄武, 马昌前, 吴福元, 罗照华, 王涛. 2002.花岗岩研究思维与方法[M].北京:地质出版社. 熊绍云, 余朝丰, 李玉文, 黄羚. 2011.伊犁盆地下石炭统阿克沙克组沉积特征及演化[J].石油学报, 32(5):797-805. doi: 10.7623/syxb201105009 徐学义, 马中平, 夏祖春, 夏林圻, 李向民, 王立社. 2005.天山石炭-二叠纪后碰撞花岗岩的Nd、Sr、Pb同位素源区示踪[J].西北地质, 38(2):1-18. http://d.old.wanfangdata.com.cn/Periodical/xbdz200502001 徐学义, 王洪亮, 马国林, 李平, 陈隽璐, 李婷. 2010.西天山那拉提地区古生代花岗岩的年代学和锆石Hf同位素研究[J].岩石矿物学杂志, 29(6):691-706. http://d.old.wanfangdata.com.cn/Periodical/yskwxzz201006007 张成立, 周鼎武, 王居里, 王润三. 2007.南天山库米什黄尖石山岩体的年代学、地球化学和Sr、Nd同位素组成及其成因意义[J].岩石学报, 23(8):1821-1829. 张国伟, 李三忠, 刘俊霞, 滕志宏, 金海龙, 李伟, 黄先雄, 吴亚红. 1999.新疆伊犁盆地的构造特征与形成演化[J].地学前缘, 6(4):203-215. http://d.old.wanfangdata.com.cn/Periodical/dxqy199904002 张江苏, 李注苍. 2006.西天山阿吾拉勒一带大哈拉军山组火山岩构造环境分析[J].甘肃地质, 15(2):10-14. 张理刚, 邢凤鸣. 1993.安徽中生代花岗岩铅同位素组成与铅同位素省划分[J].岩石学报, 9(3):254-257. 张良臣, 吴乃元. 1985.天山地质构造及演化史[J].新疆地质, 3(3):1-14. http://d.old.wanfangdata.com.cn/Conference/8210477 张金带, 徐高中, 林锦荣, 彭云彪, 王果. 2010.中国北方6种新的砂岩型铀矿对铀资源潜力的提示[J].中国地质, 37(5):1434-1449. http://geochina.cgs.gov.cn/ch/reader/view_abstract.aspx?file_no=20100520&flag=1 朱炳泉. 1998.地球科学中同位素体系理论与应用——兼论中国大陆壳幔演化[M].北京:科学出版社. 朱永峰, 张立飞, 古丽冰, 郭璇, 周晶. 2005.西天山石炭纪火山岩SHRIMP年代学及其微量元素地球化学研究[J].科学通报, 50(18):2004-2014. doi: 10.3321/j.issn:0023-074X.2005.18.014 朱志新, 董连慧, 刘淑聪, 李锦铁, 王克卓, 赵同阳, 李平, 靳留圆. 2012.新疆西天山伊犁地块晚古生代火山岩地质特征及构造意义[J].新疆地质, 30(3):258-263. http://d.old.wanfangdata.com.cn/Periodical/xjdz201203003 朱志新, 李锦铁, 董连慧, 张晓帆, 胡建卫, 王克卓. 2008.新疆南天山盲起苏晚石炭世侵入岩的确定及对南天山洋盆闭合时限的限定[J].岩石学报, 28(12):2761-2766. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200812010 朱志新, 李锦铁, 董连慧, 王克卓, 张晓帆, 徐仕琪. 2011.新疆西天山古生代侵入岩的地质特征及构造意义[J].地学前缘, 18(2):170-179. http://d.old.wanfangdata.com.cn/Periodical/dxqy201102015 朱志新, 王克卓, 郑玉洁, 孙桂华, 张超, 李亚萍. 2006.新疆伊犁地块南缘志留纪和泥盆纪花岗质侵入体锆石SHRIMP定年及其形成时构造背景的初步探讨[J].岩石学报, 22(5):1193-1200. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200605011 左国朝, 张作衡, 王志良, 刘敏, 王龙生. 2008.新疆西天山地区构造单元划分、地层系统及其构造演化[J].地质论评, 54(6):748-767. http://d.old.wanfangdata.com.cn/Periodical/dzlp200806004 -
期刊类型引用(5)
1. 何碧,赵振琯,刘海生,张文斌,陈红旗. 东天山造山带黑尖山地区花岗闪长岩岩石成因及构造意义:来自岩石学、锆石U-Pb年代学、地球化学证据. 科学技术与工程. 2024(25): 10620-10634 . 百度学术
2. 李生喜,何碧,杨博,魏志福,陶刚,甘保平,赵飞,孙平原,赵振琯,黄鹏飞. 南天山地块塔格拉克地区二长花岗岩锆石U-Pb年代学、地球化学特征:对壳源岩浆成因和构造背景的限定. 中国地质. 2023(02): 622-639 . 本站查看
3. 李建刚,刘晓燕,袁四化,陈诗哲,李瑛,赵振宏,姜纪沂. 伊犁盆地三道河河流阶地沉积物粒度特征及其古气候响应. 西北地质. 2020(04): 11-19 . 百度学术
4. 杨永春,余君鹏,赵得龙,李生栋,刘家军,王学银,王小强,孔维琼,王作刚. 甘肃省滴水山金矿区火山岩锆石U-Pb年龄、岩石地球化学特征及其形成的构造背景. 中国地质. 2019(06): 1454-1480 . 本站查看
5. 刘海声,汪洪民,刘鹏,张俊才,高元宏,康鑫,穆元红. 西藏安多县多才玛矿区强研磨性地层孕镶金刚石钻头使用效果分析. 地质与勘探. 2019(06): 1473-1483 . 百度学术
其他类型引用(1)