• 全国中文核心期刊
  • 中国科学院引文数据库核心期刊(CSCD)
  • 中国科技核心期刊
  • F5000优秀论文来源期刊
  • 荷兰《文摘与引文数据库》(Scopus)收录期刊
  • 美国《化学文摘》收录期刊
  • 俄罗斯《文摘杂志》收录期刊
高级检索

云南大关新地2井奥陶—志留纪之交钾质斑脱岩岩石地球化学特征分析

葛祥英, 牟传龙, 余谦, 刘伟, 门欣, 何江林, 陆俊泽, 梁薇

葛祥英, 牟传龙, 余谦, 刘伟, 门欣, 何江林, 陆俊泽, 梁薇. 云南大关新地2井奥陶—志留纪之交钾质斑脱岩岩石地球化学特征分析[J]. 中国地质, 2021, 48(3): 911-924. DOI: 10.12029/gc20210318
引用本文: 葛祥英, 牟传龙, 余谦, 刘伟, 门欣, 何江林, 陆俊泽, 梁薇. 云南大关新地2井奥陶—志留纪之交钾质斑脱岩岩石地球化学特征分析[J]. 中国地质, 2021, 48(3): 911-924. DOI: 10.12029/gc20210318
GE Xiangying, MOU Chuanlong, YU Qian, LIU Wei, MEN Xin, HE Jianglin, LU Junze, LIANG Wei. Petrology and geochemistry of the K-bentonites at the Ordovician-Silurian transition in XD2 well, Daguan, Yunnan Province[J]. GEOLOGY IN CHINA, 2021, 48(3): 911-924. DOI: 10.12029/gc20210318
Citation: GE Xiangying, MOU Chuanlong, YU Qian, LIU Wei, MEN Xin, HE Jianglin, LU Junze, LIANG Wei. Petrology and geochemistry of the K-bentonites at the Ordovician-Silurian transition in XD2 well, Daguan, Yunnan Province[J]. GEOLOGY IN CHINA, 2021, 48(3): 911-924. DOI: 10.12029/gc20210318

云南大关新地2井奥陶—志留纪之交钾质斑脱岩岩石地球化学特征分析

基金项目: 

中国地质调查局项目“四川盆地下古生界海相页岩气基础地质调查” DD20160176

“西南主要成矿带铀矿资源调查” DD20190122

“四川盆地地质结构与深层油气综合调查” DD20211210

详细信息
    作者简介:

    葛祥英, 女, 1986年生, 博士, 工程师, 主要从事沉积学与盆地分析工作; E-mail: gexiangying-2006@163.com

  • 中图分类号: P618.67

Petrology and geochemistry of the K-bentonites at the Ordovician-Silurian transition in XD2 well, Daguan, Yunnan Province

Funds: 

China Geological Survey Project DD20160176

China Geological Survey Project DD20190122

undefined

More Information
    Author Bio:

    GE Xiangying, female, born in 1986, master degree, an engineer, engaged in the study of sedimentology and basin analysis; E-mail: gexiangying-2006@163.com

  • 摘要:

    扬子地台内晚奥陶世末—早志留世初五峰—龙马溪组内沉积了多层钾质斑脱岩,但对于该时期扬子地台西缘钾质斑脱岩的研究报道相对较少。本文旨在通过对云南大关地区新地2井五峰—龙马溪组内沉积的钾质斑脱岩进行矿物学及地球化学分析,进一步确定扬子西缘该时期钾质斑脱岩原始岩浆类型及其所产生的构造环境。矿物学特征表明,钾质斑脱岩主要由黏土矿物和非黏土矿物组成,其中黏土矿物由伊利石和伊蒙混层组成,非黏土矿物以石英、长石、方解石、白云石和黄铁矿等为主。钾质斑脱岩主量元素以高K2O,低TiO2为特征,微量元素特征表现为富集Rb、Ba、Th、U等元素,Ti、P元素相对亏损,Ti/Th值指示了酸性火山灰的性质;ΣREE在(49.86~209.43)×10-6;与球粒陨石相比,轻稀土轻微富集、具Eu负异常,无Ce异常;在Nb/Y-Zr/TiO2图解中,数据点主要落在安山岩和粗面英安岩之间,表明钾质斑脱岩源岩浆性质为中酸性岩浆;依据微量元素特征和构造环境判别结果,初步认为原始岩浆可能形成于岛弧环境,其火山灰来源可能与扬子北缘早古生代秦岭洋闭合过程中的板块碰撞有关。

    Abstract:

    Many K-bentonites have been recognized from the Wufeng-Longmaxi Formations (Upper Ordovician-Lower Silurian) in the Yangtze Block,but only a few of them on the western margin of the Yangtze Block are reported. The mineralogical and geochemical studies of K-bentonites in the Wufeng-Longmaxi Formations through Xindi 2 well in Daguan area of Yunnan province were carried out to confirm the original magma type and its tectonic setting. The mineralogical characteristics show that the potassium bentonite is mainly composed of clay minerals and non-clay minerals,in which the clay minerals are composed of illite and illite-montmorillonite mixed beds. The non-clay minerals are mainly quartz,feldspar,calcite,dolomite and pyrite. It is geochemically characterized by high K2O and low TiO2,relative enrichment of Rb,Ba,Th and U and depletion of Ti and P elements. The Ti/Th values indicates acidic volcanic ash character. Compared with the chondrite,the total rare earth elements is (49.86-209.43)×10-6 with slight rich LREE and negative Eu amomaly,without Ce abnormity. In Nb/Y-Zr/TiO2 diagram,the data dots are mainly plotted in the andesite and trachy andesite range,which shows that the volcanic ash is mostly from middle-acid rocks. Various chemical discrimination diagrams and trace elements imply that K-bentonites were possibly derived from an island arc environment,and the volcanic ash was probably related to the subduction and closure of the Qinling Ocean on the northern border of Yangtze Plate in the Early Paleozoic.

  • 钾质斑脱岩,由火山喷发产生的火山灰物质在海相环境中经沉积、成岩和蚀变作用而形成,它的存在多与地质历史时期的火山活动有关。奥陶—志留纪时期钾质斑脱岩全球广布,在北美、南美、中欧、北欧以及中国华南地区均有发育。国外对于该时期斑脱岩的研究相对久远,以Huff, Bergström和Kolata等为代表,他们在年代地层、古大陆再造、地层对比和构造背景分析方面取得了很大的成果(Kolata et al., 1987, 1996Huff et al., 1992, 1993, 1996, 1997, 1998, 2000, 2014Bergström et al., 1997, 1998, 2004, 2016Huff, 2008, 2016Harvey, 2014Kiipli et al., 2014, 2015Heintz et al., 2015Türkmenoğlu et al., 2015Siir et al., 2015Jones et al., 2017Rakociński et al., 2018Trela et al., 2018)。

    中国对于钾质斑脱岩的研究起步相对较晚,始于20世纪80年代且多集中于前寒武系和二叠—三叠系钾质斑脱岩的研究(万斌等,2013Zhou et al., 2014Cui and Kump, 2015廖志伟等,2016Wang et al., 2018Hong et al., 2019Zheng et al., 2020a)。近些年随着华南地区奥陶—志留系钾质斑脱岩不断地被发现和证实,Su et al.(2003, 2007, 2009)、苏文博等(2002, 2006, 2007)、Hu et al.(2008)胡艳华等(2008, 2009a, 2009b, 2012)、汪隆武等(2015)谢尚克等(2012)罗华等(2016, 2017)、Zheng et al.(2020b)开始对华南东部地区(尤其湖北宜昌王家湾北和贵州桐梓南坝子剖面)晚奥陶世末—早志留世初沉积的钾质斑脱岩开展同位素年龄、岩石矿物学和地球化学等研究工作,指出钾质斑脱岩所指示的火山活动与构造板块活动(华南地区扬子陆块和华夏陆块的碰撞拼接)有着密切联系。该时期扬子地台西缘同样也沉积了多层钾质斑脱岩,但对于该地区钾质斑脱岩的相关研究报道相对较少。上奥陶统五峰组—下志留统龙马溪组黑色页岩广泛分布于上扬子地区,是近些年来上扬子地区早古生代页岩气研究的重要层位,中石油,中石化等单位也相继在四川盆地及其周缘地区开展钻井及地表剖面调查工作(Yan et al., 2015Luo et al., 2016王玉满等,2017Yang et al., 2017李斌等,2017熊晓辉等,2018陈孝红等,2018宋腾等,2018姜生玲等,2018Ge et al., 2019杨平等,2019冯伟明等,2021),钻井岩心资料为我们提供了很多丰富新鲜的黑色泥页岩及钾质斑脱岩样品。新地2井位于云南省昭通市大关县木杆镇(图 1),其岩心内上奥陶统—下志留统发育多层钾质斑脱岩,笔者通过扫描电镜(SEM))和X射线衍射仪对该岩心内钾质斑脱岩进行矿物岩石学分析,以X荧光光谱仪和ICP-MS等离子体质谱仪对所发现的钾质斑脱岩进行主量元素、微量元素地球化学分析,尝试利用钾质斑脱岩的某些不活泼元素的地球化学特征,进行源岩浆性质和构造环境的判别,以丰富华南地区奥陶—志留系钾质斑脱岩的研究。

    图  1  新地2井位置图
    Figure  1.  Location of XD2 well

    本研究样品均采自新地2井岩心,具体采样层位见图 2。将采集到的样品在室内进行风干,剔除明显不属于钾质斑脱岩的杂质,以备后续的岩石学和地球化学分析测试。

    图  2  新地2井柱状图和样品采样位置图(生物化石带据Chen et al., 2006)
    Figure  2.  Lithological column and sampling location of XD2 well (Chronostratigraphic subdivision after Chen et al., 2006)

    样品的扫描电镜分析在核工业北京地质研究院利用Nova Nano SEM450型扫描电子显微镜完成。X衍射分析在四川省科源工程技术测试中心完成,测试过程使用X pertPowder型X射线衍射仪,仪器采用Ni滤波Cu靶辐射,工作电压为30 kV,工作电流为25 mA,发射狭缝与散射狭缝均为1°,接受狭缝0.3 mm,扫描方式为步进扫描,扫描速度采用2°(2θ)/min,采样步宽为0.02°(2θ)数据分析采用软件High Score。样品的主量和微量元素分析测试均在国家地质实验测试中心完成,主量元素采用X荧光光谱仪(PW4400)分析,其中Al2O3、CaO、Fe2O3、K2O、MgO、MnO、Na2O、P2O5、SiO2、TiO2遵循GB/T 14506.28-2010,FeO遵循GB/T14506.14-2010,分析精度优于5%,微量元素采用ICP-MS等离子质谱仪(PE300D)分析,实验依据DZ /T0223-2001电感耦合等离子体质谱(ICP-MS) 方法,分析精度优于10%。

    新地2井岩心内五峰—龙马溪组沉积的钾质斑脱岩颜色相对单一,通常呈现灰色和灰白色,单层厚度在1~4 cm(图 3),且钾质斑脱岩内通常含有黄铁矿条带或结核。姜尧发等(2006)曾指出大量黄铁矿的出现,可能与当时由于火山作用喷发出大量含硫化物火山物质有关,这些富硫矿物为钾质斑脱岩在后期沉积过程中黄铁矿的形成提供了物质基础。由于钾质斑脱岩厚度均相对较薄(小于4 cm),加之相对疏松,未能成功制作成岩石薄片进行镜下观察,其矿物组成主要通过X衍射分析和扫描电镜进行确定。

    图  3  新地2井岩心五峰—龙马溪组钾质斑脱岩照片
    Figure  3.  Photos of K-bentonite from the Wufeng-Longmaxi Formations in XD2 well

    X衍射分析结果表明所研究的钾质斑脱岩主要由黏土矿物和非黏土矿物组成(表 1图 4),黏土矿物主要为伊利石和伊蒙混层,其中伊利石含量55%~84%,伊蒙混层13%~37%;非黏土矿物主要有石英、长石、方解石、白云石以及黄铁矿等。其中样品XD2-B4、B5、B6中可能因混入了较多的黄铁矿结核成分而导致其矿物成分中黄铁矿含量高达38%~66%,从而导致上述样品中所测的其他矿物成分含量相对不准确。除XD2-B4,B5,B6之外,钾质斑脱岩样品的黏土矿物含量普遍大于50%,非黏土矿物中石英和钠长石存在于所有样品中,含量分别为2%~8%和5%~20%,方解石和白云石在样品分别为3%~7%和4%~6%,另外黄铁矿含量在8%~30%。

    表  1  新地2井五峰—龙马溪组内钾质斑脱岩矿物成分(X衍射分析))
    Table  1.  Mineral compositions of K-bentonite samples from the Wufeng-Longmaxi Formations in XD2 well (XRD)
    下载: 导出CSV 
    | 显示表格
    图  4  新地2井五峰—龙马溪组内钾质斑脱岩样品的X衍射图谱
    Figure  4.  X-ray diffraction of the K-bentonite from Wufeng-Longmaxi Formations in XD2 well

    由所有样品的主量元素含量分析结果(表 2)可见,样品XD2-B4-B6中具低SiO2(9.31%~25.63%)和高Fe2O3(31.11%~51.6%)含量,而且灼失量也较高(19.68%~28.83%),以上均说明这三层钾质斑脱岩样品可能因混入了围岩成分而导致样品的不纯,因此后面的讨论中均不包含这3个样品。

    表  2  新地2井岩心内五峰—龙马溪组钾质斑脱岩及参考样品主量元素含量(%)
    Table  2.  Analytical data of major elements(%) of K-bentonite from the Wufeng-Longmaxi Formations in XD2 well and reference samples
    下载: 导出CSV 
    | 显示表格

    其余4个钾质斑脱岩样品中SiO2含量38.37%~48.75%,平均44.90%,Al2O3含量在16.71%~25.76%,平均22.17%。4件钾质斑脱岩样品均表现为K2O>Na2O,其中K2O含量在4.45%~6.99%,平均5.93%,Na2O含量较低,介于0.77%~1.51%,平均0.99%,显示了其钾质斑脱岩的特征;Fe2O3含量变化也相对较大,从2.95%~15.42%不等,FeO含量相对较稳定,在0.93%~2.55%,平均1.41%。MgO、CaO、MnO、TiO2含量均较低,其中MgO介于2.5%~2.65%,平均2.57%,CaO分布在1.33%~3.06%,MnO不超过0.13%,TiO2最大值2.32%。

    与NASC和PAAS相比,这些钾质斑脱岩具有低SiO2,高Al2O3,高K2O等特征,其SiO2含量普遍低于NASC(64.8%)和PAAS(62.8%),但其平均Al2O3含量22.17%,高于NASC(16.90%)和PAAS(18.90%),K2O最低值4.45%都明显高于NASC和PAAS的K2O含量(3.99%,3.70%),充分显示了其富钾质的特征(周明忠等,2007)。

    所有样品的微量元素特征分析结果示于表 3。微量元素原始地幔标准化蛛网图(图 5,除去样品XD2-B4、B5、B6)表明其微量元素总体特征表现为富集Rb、Ba、Th、U等元素,Ti、P元素相对亏损。大离子亲石元素Sr、K呈现较为强烈的负异常,高场强元素Nd、Hf表现出一定程度的正异常。其中Ti/Th比值可以初步指示钾质斑脱岩源岩浆的性质,酸性火山灰物源的Ti/Th比值为30~400,中性火山灰物源为400~1000,基性火山灰物源为2500~3500(冯宝华,1989),4个钾质斑脱岩样品的Ti/Th比值介于31.34~100.55,提示其酸性火山灰物源。

    表  3  新地2井岩心内五峰—龙马溪组钾质斑脱岩微量元素含量(10-6
    Table  3.  Analytical data of trace elements (10-6) of K-bentonite samples from the Wufeng-Longmaxi Formations in XD2 well
    下载: 导出CSV 
    | 显示表格
    图  5  新地2井五峰—龙马溪组内钾质斑脱岩
    微量元素原始地幔标准化珠形网
    Figure  5.  Primitive mantle-normalized trace elements spider of K-bentonite from Wufeng-Longmaxi Formations in XD2 well

    所有钾质斑脱岩样品的稀土元素结果见表 4,Eu异常采用Rollinson(1993)提出的计算方法(δEu=Eu/Eu*=(EuN)/[(SmN×GdN)1/2])进行计算,其中下标N指示元素相对于球粒陨石的标准化值(Taylor and McLenann, 1985)。从表 4可以看出所研究的钾质斑脱岩样品稀土总量∑REE含量变化较大,其范围(除XD2-B4、B5、B6样品外)介于49.8610-6~209.43×10-6,相对富集LREE,贫HREE,LREE/HREE比值为1.44~3.58,平均值为2.36;LaN/YbN比值为0.67~2.57,δEu值为0.60~0.95。从稀土元素球粒陨石标准化模式图(图 6)显示,整体上曲线展布特征大体一致,其中样品XD2-B3和B7标准化配分图呈弱的右倾型,轻稀土弱富集,重稀土相对亏损,Eu轻度亏损,无明显的Ce异常,样品XD2-B1和B2标准化配分图上呈近乎平坦型,Eu负异常。周明忠等(2007)指出Eu负异常形成的原因有两种可能,一是继承了母岩浆Eu负异常,另外一种可能是钾质斑脱岩沉降后期成岩作用的结果。从4个钾质斑脱岩样品的稀土元素的配分模式来看,其无明显的Ce异常说明钾质斑脱岩未受到海水蚀变作用的影响,火山灰沉降后受海水成岩作用影响较小,其Eu负异常可能是继承了母岩浆Eu负异常特征。

    表  4  新地2井岩心内五峰—龙马溪组钾质斑脱岩稀土元素含量(10-6
    Table  4.  Analytical data of REE(10-6) of K-bentonite samples from the Wufeng-Longmaxi Formations in XD2 well
    下载: 导出CSV 
    | 显示表格
    图  6  新地2井五峰—龙马溪组钾质斑脱岩稀土元素配分模式
    Figure  6.  Chondrite-normalized REE distribution patterns of K-bentonite from the Wufeng-Longmaxi Formations in XD2 well

    TiO2以及Nb、Zr、Y、Ta、Hf等微量元素被认为在大部分的成岩过程和低级变质作用过程中是不活泼的,因而它们能够有效地保存相应的原始岩浆信息(Huff et al., 1997苏文博等,2006胡艳华等,2009a)。对于钾质斑脱岩的原始岩浆性质恢复,通常采用的是Winchester和Floyd (1977) 的Nb/Y-Zr/TiO2图解。将新地2井岩心的4个钾质斑脱岩样品(XD2-B4,B5,B6除外)投入Nb/Y- Zr /TiO2判别图中(图 7a)。结果表明其中1个钾质斑脱岩样品落入粗面英安岩类,1个落入碱性玄武岩类,2个落入安山岩类范围内,该结果与胡艳华等(2009)宜昌王家湾剖面以及Su et al.(2009)湖南桃源、新化、江苏句容等地奥陶—志留系钾质斑脱岩大体一致,仅一个样品落在碱性玄武岩范围,其余多数样品落在安山岩、粗面岩和流纹岩范围内,反映所研究的钾质斑脱岩的原始岩浆性质可能为中酸性成分。

    图  7  新地2井五峰—龙马溪组内钾质斑脱岩原始岩浆及构造背景判别图解
    (a底图据Winchester and Floyd, 1977;b、c底图据Pearce et al., 1984;d底图据Wood, 1980;e底图据Pearce and Peat, 1995;f底图据Pearce and Peat, 1979)
    WPG—板内花岗岩;VAG—火山弧花岗岩;ORG—洋中脊花岗岩;syn COLG—同碰撞花岗岩;A—N型MORE;B—E型MORE和板内拉斑玄武岩;C—碱性板内玄武岩;D-火山弧玄武岩
    Figure  7.  Source magma and tectonic environment discrimination diagrams of K-bentonite samples from the Wufeng-Longmaxi Formations in XD2 well
    (a-Bulk rock ratios of Nb/Y and Zr/TiO2 from dashed lines indicate source fields defined by Winchester & Floyd (1977); b-Nb-Y and (c-Rb-Y + Ta plots of K-bentonites defined by Pearce et al.(1984); d-Hf/3-Th-Ta, e-Th/Yb-Nb/Yb and f-TiO2-Zr plots of K-bentonites defined by Wood(1980); Pearce and Peat(1995, 1979) respectively. WPG-within plate granite; VAG-volcanic arc granite; ORG-ocean ridge granite, syn COLG-syn-collision granite; A-N-MORE; B-E-MORE and within plate tholeiitic basalt; C-within palte alkaline basalt; D-volcanic arc basalt

    钾质斑脱岩中一些稳定的微量和稀土元素除了可以反映原始岩浆成分之外,还可以有效指示源火山喷发的构造背景(Teale and Spears, 1986Roberts and Merriman, 1990Huff et al., 1997)。最初Pearce et al.(1973)根据化学成分来限定岩浆起源的大地构造背景,区别产生于不同大地构造背景的玄武岩,并建立了构造岩浆判别图解,被广泛应用的有Th-Hf-Ta图解、(Nb+Y)-Rb图解、Y-Nb图解等,尔后Pearce et al.(1984)又将该判别方法发展到花岗岩质岩石领域,并有更多的研究者提出了许多新的基于化学成分判断岩浆源区大地构造背景的判别图解(Wood,1980Mullen,1983Cabanis and Lecolle, 1989)。对于钾质斑脱岩而言,判别其构造背景应用最多的是Nb-Y,(Y+Nb)-Rb,Zr-TiO2,Nb/Yb-Th/Yb等。

    将新地2井岩心中4个钾质斑脱岩(XD2-B4,B5,B6除外)投入以上判别图解中,Y-Nb图(图 7b)显示,4个样品均落在板内花岗岩一侧,该结果与Su et al.(2009)湖南、江苏等地的奥陶—志留系钾质斑脱岩结果基本一致,但与胡艳华等(2009)有较大的不同,他们的结果在岛弧、同碰撞、洋脊和板内花岗岩均有落入。(Y+Nb)-Rb图解(图 7c)中,判别结果与胡艳华等(2009)一致,4个样品均落在岛弧型花岗岩和板内花岗岩的交界线上以及接近板内花岗岩一侧。在Nb/Yb-Th/Yb图解(图 7e)中,4个样品均落入大陆弧和大洋弧的重合处,在Zr-TiO2图解(图 7f)中,4个样品均落在板内岩浆范围内,但在Hf/3-Th-Ta三角图解中(Wood,1980图 7d),其中除1个样品未落入相关定义区域内外,其余3个数据点均落入火山弧玄武岩区内。此外近期研究表明,曾经被认为是不活泼的Zr、Hf、Nb、Ta、Ti等元素在有水条件下的化学风化过程中,也表现出一定的活动性(Nesbitt et al., 1996Nesbitt and Markovics, 1997Ma et al., 2007),因此以这些非活动性元素的含量作为变量的判别图可能也会存在一定的误差,胡艳华(2009ab )指出化学性质比较接近的元素在风化作用过程中受到的影响相当,因此可以利用元素之间的比值来消除风化作用的影响,可以说利用元素的比值作为变量的判别图解可能更加准确,而基于不活泼元素比值的Nb/Yb-Th/Yb图解(Pearce and Peate, 1995)和Hf/3-Th-Ta三角图解(Wood,1980)的判定结果可能更具信服力,故本文笔者更倾向于认为新地2井上奥陶统—下志留统五峰—龙马溪组内发育的钾质斑脱岩其源火山构造背景可能多源于岛弧环境。

    钾质斑脱岩原为火山灰沉降后经海水蚀变作用形成,属火山成因,这些火山灰来源于哪里呢?钾质斑脱岩的地球化学信息指示其源火山构造背景为岛弧环境,晚奥陶世—早志留世初,扬子地台北缘早古生代秦岭洋闭合过程中板块俯冲发育岛弧岩浆活动,杨颖(2011)从湖北宜昌黄花场和桐梓南坝子两条剖面五峰—龙马溪组内的斑脱岩中分选出的锆石具典型的环带结构,属岩浆成因锆石,锆石U-Pb年龄结果也在440 Ma左右,黄花场剖面锆石Hf同位素εHf(t)值为正,同南秦岭陕西省旬阳县早泥盆世西岔河组杂砂岩中的碎屑锆石年龄及εHf(t)值特征一致,以上均反映火山灰的来源可能与扬子北缘秦岭洋的闭合的板块俯冲活动有关。

    另外有学者指出这些火山灰来源与扬子和华夏地块的汇聚有关,但是现阶段针对扬子与华夏地块在早古生代是否为板块间俯冲还是板内碰撞挤压仍未有定论(刘宝珺等,1994陈旭等,1995殷鸿福等,1999舒良树,2006张国伟等,2013),华夏板块附近也未见有早古生代岛弧活动的迹象,苏文博等(2006)Su et al.(2009)指出扬子板块的东南缘外侧可能存在一个“华夏陆块”,这个“华夏陆块”的范围可能包括了现今中国东南部海岸线,东海以及其他相邻地区,正是由于以上两陆块的拼合碰撞产生相应的火山岛弧活动,为华南晚奥陶世—早志留世初钾质斑脱岩的沉积提供相应的火山灰来源。笔者可能更倾向于认为华南地区五峰—龙马溪组黑色页岩内沉积的钾质斑脱岩的火山灰来源可能与扬子北缘秦岭洋闭合的板块俯冲活动有关。

    (1)新地2井五峰—龙马溪组内斑脱岩矿物成分以黏土矿物(伊蒙混层和伊利石)为主,同时含有石英、长石、黄铁矿、方解石、白云石等矿物,且所有样品均为K2O>Na2O,K2O平均含量大于3.5%,显示了其富钾质特征,野外和室内特征都符合钾质斑脱岩的定义。

    (2)斑脱岩样品具有相似的地球化学组成及相应的配分模式,主量元素以高K2O,低CaO、低TiO2为特征,其中微量元素总体特征表现富集Rb、Ba、Th、U等元素,Ti、P元素相对亏损。大离子亲石元素Sr、K呈现较为强烈的负异常,高场强元素Nd、Hf表现出一定程度的正异常。稀土元素ΣREE在(49.86~209.43)×10-6;与球粒陨石相比,轻稀土轻微富集、具Eu负异常,无Ce异常。

    (3)Nb/Y-Zr/TiO2岩浆判别图表明这些钾质斑脱岩的原始岩浆具中酸性特征,依据微量元素特征和构造环境判别图(Y-Nb,(Y+Nb)-Rb,Zr-TiO2,Nb/Yb-Th/Yb,Hf/3-Th-Ta三角图解)等,初步认为其源火山构造背景可能多源于岛弧环境,火山灰来源可能与扬子北缘早古生代秦岭洋闭合过程中的板块俯冲有关。

    致谢: 非常感谢审稿专家们对笔者所进行的指导及所提出的建议。
  • 图  1   新地2井位置图

    Figure  1.   Location of XD2 well

    图  2   新地2井柱状图和样品采样位置图(生物化石带据Chen et al., 2006)

    Figure  2.   Lithological column and sampling location of XD2 well (Chronostratigraphic subdivision after Chen et al., 2006)

    图  3   新地2井岩心五峰—龙马溪组钾质斑脱岩照片

    Figure  3.   Photos of K-bentonite from the Wufeng-Longmaxi Formations in XD2 well

    图  4   新地2井五峰—龙马溪组内钾质斑脱岩样品的X衍射图谱

    Figure  4.   X-ray diffraction of the K-bentonite from Wufeng-Longmaxi Formations in XD2 well

    图  5   新地2井五峰—龙马溪组内钾质斑脱岩

    微量元素原始地幔标准化珠形网

    Figure  5.   Primitive mantle-normalized trace elements spider of K-bentonite from Wufeng-Longmaxi Formations in XD2 well

    图  6   新地2井五峰—龙马溪组钾质斑脱岩稀土元素配分模式

    Figure  6.   Chondrite-normalized REE distribution patterns of K-bentonite from the Wufeng-Longmaxi Formations in XD2 well

    图  7   新地2井五峰—龙马溪组内钾质斑脱岩原始岩浆及构造背景判别图解

    (a底图据Winchester and Floyd, 1977;b、c底图据Pearce et al., 1984;d底图据Wood, 1980;e底图据Pearce and Peat, 1995;f底图据Pearce and Peat, 1979)
    WPG—板内花岗岩;VAG—火山弧花岗岩;ORG—洋中脊花岗岩;syn COLG—同碰撞花岗岩;A—N型MORE;B—E型MORE和板内拉斑玄武岩;C—碱性板内玄武岩;D-火山弧玄武岩

    Figure  7.   Source magma and tectonic environment discrimination diagrams of K-bentonite samples from the Wufeng-Longmaxi Formations in XD2 well

    (a-Bulk rock ratios of Nb/Y and Zr/TiO2 from dashed lines indicate source fields defined by Winchester & Floyd (1977); b-Nb-Y and (c-Rb-Y + Ta plots of K-bentonites defined by Pearce et al.(1984); d-Hf/3-Th-Ta, e-Th/Yb-Nb/Yb and f-TiO2-Zr plots of K-bentonites defined by Wood(1980); Pearce and Peat(1995, 1979) respectively. WPG-within plate granite; VAG-volcanic arc granite; ORG-ocean ridge granite, syn COLG-syn-collision granite; A-N-MORE; B-E-MORE and within plate tholeiitic basalt; C-within palte alkaline basalt; D-volcanic arc basalt

    表  1   新地2井五峰—龙马溪组内钾质斑脱岩矿物成分(X衍射分析))

    Table  1   Mineral compositions of K-bentonite samples from the Wufeng-Longmaxi Formations in XD2 well (XRD)

    下载: 导出CSV

    表  2   新地2井岩心内五峰—龙马溪组钾质斑脱岩及参考样品主量元素含量(%)

    Table  2   Analytical data of major elements(%) of K-bentonite from the Wufeng-Longmaxi Formations in XD2 well and reference samples

    下载: 导出CSV

    表  3   新地2井岩心内五峰—龙马溪组钾质斑脱岩微量元素含量(10-6

    Table  3   Analytical data of trace elements (10-6) of K-bentonite samples from the Wufeng-Longmaxi Formations in XD2 well

    下载: 导出CSV

    表  4   新地2井岩心内五峰—龙马溪组钾质斑脱岩稀土元素含量(10-6

    Table  4   Analytical data of REE(10-6) of K-bentonite samples from the Wufeng-Longmaxi Formations in XD2 well

    下载: 导出CSV
  • Bergström S M, Huff W D, Kolata D R. 1998. The Lower Silurian Osmundsberg K-bentonite. PartⅠ: Stratigraphic position, distribution, and palaeogeographic significance[J]. Geological Magazine, 135: 1-13. doi: 10.1017/S0016756897007887

    Bergström S M, Huff W D, Kolata D R, Melchin M J. 1997. Occurrence and significance of Silurian K-bentonite beds at Arisaig, NovaScotia, eastern Canada[J]. Canadian Journal of Earth Sciences, 34: 1630-1643. doi: 10.1139/e17-131

    Bergström S M, Huff W D, Saltzman M R, Kolata D R, Leslie S A. 2004. The greatest volcanic ash falls in the Phanerozoic: Millbrig and Kinnekulle K-bentonites[J]. The Sedimentary Record, 2: 4-7. http://www.researchgate.net/publication/285746099_The_Greatest_Volcanic_Ash_Falls_in_the_Phanerozoic_Trans-Atlantic_Relations_of_the_Ordovician_Millbrig_and_Kinnekulle_K-Bentonites

    Bergström S M, Eriksson M E, Schmitz B, Young S A, Ahlberg P. 2016. Upper Ordovician δ13Corg chemostratigraphy, K-bentonite stratigraphy, and biostratigraphy in southern Scandinavia: A reappraisal[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 454: 175-188. doi: 10.1016/j.palaeo.2016.04.037

    Cabanis B, Lecolle M. 1989. The La/10-Y/15-Nb/8 diagram; a tool for distinguishing volcanic series and discovering crustal mixing and/or contamination[J]. Comptes Rendus de l'Academie des Sciences, 309: 2023-2029. http://cjes.geoscienceworld.org/lookup/external-ref?access_num=1992055081&link_type=GEOREF

    Chen Xu, Rong Jiayu, Rowley D B, Zhang Jin, Zhang Yuandong, Zhan Renbin. 1995. Is the Early Paleozoic Banxi Ocean in South China necessary?[J]. Geological Review, 41(5): 389-400(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-review_thesis/0201253284157.html

    Chen X, Rong J Y, Fan J X, Zhan R B, Mitchell C E, Harper D A T, Melchin M J, Peng P A, Finney S C, Wang X F. 2006. The Global boundary Stratotype Section and Point (GSSP) for the base of the Hirnantian Stage (the uppermost of the Ordovician System)[J]. Episodes, 29: 183-196. doi: 10.18814/epiiugs/2006/v29i3/004

    Chen Xiaohong, Zhang Baomin, Zhang Guotao, Chen Lin, Zhang Miao, Li Peijun. 2018. High shale gas industry flow obtained from the Ordovician Wufeng Formation and the Silurian Longmaxi Formation of Yichang area, Hubei Province[J]. Geology in China, 45(1): 199-200.

    Cui Y, Kump L R. 2015. Global warming and the end-Permian extinction event: Proxy and modeling perspectives[J]. Earth-Science Reviews, 149: 5-22. doi: 10.1016/j.earscirev.2014.04.007

    Feng Baohua. 1989. Carboniferous-Permian Tonsteins formed by Hydrolytic reformation of volcanic ash sediments in North China[J]. Acta Sedimentologica Sinica, 7(1): 101-108(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB198901011.htm

    Feng Weiming, Li Rong, Zhao Zhan, Yu Qian, Yang Han, Xie Yuan, Ye Dingnan. 2021. Boundary definition of Wufeng Formation and Longmaxi Formation in well DD1 and sedimentary environment evolution of Northeastern Yunnan[J]. Geology in China, 48(1): 297-308(in Chinese with English abstract).

    Ge X Y, Mou C L, Wang C S, Men X, Chen C, Hou Q. 2019. Mineralogical and geochemical characteristics of K-bentonites from the Late Ordovician to the Early Silurian in South China and their geological significance[J]. Geological Journal, 54: 514-528. doi: 10.1002/gj.3201

    Ge X Y, Mou C L, Yu Q, Liu W, Men X, He J L. 2019. The geochemistry of the sedimentary rocks from the Huadi No. 1 well in the Wufeng-Longmaxi formations (Upper Ordovician-Lower Silurian), South China, with implications for paleoweathering, provenance, tectonic setting and paleoclimate[J]. Marine and Petroleum Geology, 103: 646-660. doi: 10.1016/j.marpetgeo.2018.12.040

    Gromet L P, Haskin L A, Korotev R L, Dymek R F. 1984. The "North American shale composite": Its compilation, major and trace element characteristics[J]. Geochimica et Cosmochimica Acta, 48: 2469-2482. doi: 10.1016/0016-7037(84)90298-9

    Harvey J C. 2014. Zircon age and oxygen isotopic correlations between Bouse Formation tephra and the Lawlor Tuff[J]. Geosphere, 10: 221-232. doi: 10.1130/GES00904.1

    Heintz M L, Yancey T E, Miller B V, Heizler M T. 2015. Tephrochronology and geochemistry of Eocene and Oligocene volcanic ashes of east and central Texas[J]. GSA Bulletin, 127: 770-780. doi: 10.1130/B31146.1

    Hong H L, Zhao L L, Fang Q, Algeo T J, Wang C W, Yu J X, Gong N N, Yin K, Ji K P. 2019. Volcanic sources and diagenetic alteration of Permian-Triassic boundary Kbentonites in Guizhou Province, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 519: 141-153. doi: 10.1016/j.palaeo.2018.01.019

    HuY H, Zhou J B, Song B, Li W, Sun W D. 2008. SHRIMP zircon U-Pb dating from K-bentonite in the top of Ordovician of Wangjiawan Section, Yichang, Hubei, China[J]. Science in China (Series D), 51: 493-498. doi: 10.1007/s11430-008-0028-1

    Hu Yanhua, Liu Jian, Zhou Mingzhong, Wang Fangyue, Ding Xing, Ling Mingxing, Sun Weidong. 2009a. An overview of Ordovician and Silurian K-bentonites[J]. Geochimica, 38(4): 390-401(in Chinese with English abstract). http://www.researchgate.net/publication/285881021_An_overview_of_Ordovician_and_Silurian_K-bentonites

    Hu Yanhua, Qian Junfeng, Zhu Xianyao, Xu Yan, Gu Mingguang, Li Jianfeng. 2012. The overview and origin analysis for the Caledonian Movement in the South China Block[J]. Bulletin of Science and Technology, 28(11): 42-48(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KJTB201211012.htm

    Hu Yanhua, Zhou Jibin, Song Bin, Li Wei, Sun Weidong. 2008. SHRIMP zircon U-Pb dating from K-bentonite in the top of Ordovician of Wangjiawan Section, Yichang, Hubei, China[J]. Science in China (Series D), 38(1): 72-77(in Chinese with English abstract). doi: 10.1007/s11430-008-0028-1

    Hu Yanhua, Sun Weidong, Ding Xing, Wang Fangyue, Ling Mingxing, Liu Jian. 2009b. Volcanic event at the Ordovician-Silurian boundary: The message from K-bentonite of Yangtze Block[J]. Acta Petrologica Sinica, 25(12): 3298-3308(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200912019.htm

    Huff W D. 2008. Ordovician K-bentonites: Issues in interpreting and correlating ancient tephras[J]. Quaternary International, 178: 276-287. doi: 10.1016/j.quaint.2007.04.007

    Huff W D. 2016. K-bentonites: A review[J]. American Mineralogist, 101: 43-70. doi: 10.2138/am-2016-5339

    Huff W D, Bergström S M, Kolata D R. 1992. Gigantic Ordovician volcanicash fall in North America and Europe: Biological, tectonomagmatic, and event-stratigraphic significance[J]. Geology, 20: 875-878. doi: 10.1130/0091-7613(1992)020<0875:GOVAFI>2.3.CO;2

    Huff W D, Bergström S M, Kolata D R. 2000. Silurian K-bentonites of the Dnestr Basin, Podolia, Ukraine[J]. Journal of the Geological Society, 157: 493-504. doi: 10.1144/jgs.157.2.493

    Huff W D, Bergström S M, Kolata D R, Sun H P. 1998. The Lower Silurian Osmundsberg K-bentonite. PartⅡ: Mineralogy, geochemistry, chemostratigraphy and tectonomagmatic significance[J]. Geological Magazine, 135: 15-26. doi: 10.1017/S001675689700811X

    Huff W D, Davis D W, Bergström S M, Krekeler M P S, Kolata D R, Cingolani C A. 1997. A biostratigraphically well-constrained K-bentonite U-Pb zircon age of the lowermost Darriwilian stage (Middle Ordovician) from the Argentine Precordillera[J]. Episodes, 20: 29-33. doi: 10.18814/epiiugs/1997/v20i1/006

    Huff W D, Dronov A V, Sell B, Kanygin A V, Gonta T V. 2014. Traces of explosive volcanic eruptions in the Upper Ordovician of the Siberian Platform[J]. Estonian Journal of Earth Sciences, 63: 244-250. doi: 10.3176/earth.2014.26

    Huff W D, Kolata D R, Bergström S M, Zhang Y S. 1996. Large magnitude Middle Ordovician volcanic ash falls in North America and Europe: Dimensions, emplacement and post-emplacement characteristics[J]. Journal of Volcanology and Geothermal Research, 73: 285-301. doi: 10.1016/0377-0273(96)00025-X

    Huff W D, Merriman R J, Morgan D J, Roberts B. 1993. Distribution and tectonic setting of the Ordovician K-bentonites in the United-Kingdom[J]. Geological Magazine, 130: 93-100. doi: 10.1017/S001675680002375X

    Jiang Shengling, Li Bo, Peng Chuansheng, Hu Xiaolan, Hong Keyan, Zhu Liangliang. 2018. Characteristics and gas content of Wufeng-Longmaxi Formation Shale in the Well LD2 of the Laifeng-Xianfeng Block[J]. Geology and Exploration, 54(1): 203-210(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZKT201801022.htm

    JiangYaofa, Tang Yuegang, Dai Shifeng, Zou Xing, Qian Handong, Zhou Guoqing. 2006. Pyrites and sulfur isotopic composition near Permian-Triassic boundary in Meishan, Zhejiang[J]. Acta Geologica Sinica, 80(8): 1202-1207(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_zgkydxxb-e200604017.aspx

    Jones D S, Martini A M, Fike D A, Kaiho K. 2017. A volcanic trigger for the Late Ordovician mass extinction? Mercury data from south China and Laurentia[J]. The Geological Society of America, 45: 631-634. http://adsabs.harvard.edu/abs/2017Geo....45..631J

    Kiipli T, Kallaste T, Nielsen A T, Schovsbo N H, Siir S. 2014. Geochemical discrimination of the Upper Ordovician Kinnekulle Bentonite in the Billegrav-2 drill core section, Bornholm, Denmark[J]. Estonian Journal of Earth Sciences, 63: 264-270. doi: 10.3176/earth.2014.29

    Kiipli T, Dahlqvist P, Kallaste T, Kiipli E, Nõlvak J. 2015. Upper Katian (Ordovician) bentonites in the East Baltic, Scandinavia and Scotland: Geochemical correlation and volcanic source interpretation[J]. Geological Magazine, 152: 589-602. doi: 10.1017/S001675681400051X

    Kolata D R, Frost J K, Huff W D. 1987. Chemical correlation of K-bentonite beds in the Middle Ordovician Decorah Subgroup, upper Mississippi Valley[J]. Geology, 15: 208-211. doi: 10.1130/0091-7613(1987)15<208:CCOKBI>2.0.CO;2

    Kolata D R, Huff W D, Bergström S M. 1996. Ordovician K-bentonites of Eastern North America[J]. Geological Society of America (Special Paper), 313: 1-84. http://www.researchgate.net/publication/280296624_Ordovician_K-Bentonites_of_Eastern_North_America

    Li Bin, Hu Bowen, Luo Qun. 2017. A study on sequence stratigraphy and sedimentary microfacies of Longmaxi Formation of Early Silurian in the Baojing area, Hunan Province[J]. Geology and Exploration, 53(6): 1229-1239(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT201706019.htm

    Liao Zhiwei, Hu Wenxuan, Wang Xiaolin, Cao Jian, Yao Suping, Wan Ye. 2016. Volcanic origin of claystone near the Permian-Triassic boundary in the deep water environment of the Yangtze Region and its implications for LPME[J]. Acta Geological Sinica, 90(4): 785-800(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-geologica-sinica_thesis/0201252701942.html

    Liu Baojun, Xu Xiaosong. 1994. Lithofacies Palaeogeography Atlas of South China (Sinian-Triassic Period)[M]. Beijing: Science Press, 1-188(in Chinese).

    Luo Hua, He Renliang, Pan Longke, Yang Cheng, Yu Guofei. 2016. LA-ICP-MS zircon U-Pb age and its significance of Late Ordovician-Early Silurian Longmaxi bentonite[J]. Resources Environment & Engineering, 30(4): 547-550(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HBDK201604001.htm

    Luo Hua, Pan Longke, He Renliang. 2017. Geochemical characeristics and geological significance of Longmaxi Formation of Late Ordovician-Early Silurian in Mayangzhai Area, Hubei Province[J]. Resources Environment & Engineering, 31(1): 1-12(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HBDK201701001.htm

    Luo Q Y, Zhong N N, Dai N, Zhang W. 2016. Graptolite-derived organic matter in the Wufeng-Longmaxi Formations(Upper Ordovician-Lower Silurian) of southeastern Chongqing, China: Implications for gas shale evaluation[J]. International Journal of Coal Geology, 153: 87-98. doi: 10.1016/j.coal.2015.11.014

    Ma J L, Wei G J, Xu Y G, Long W G, Sun W D. 2007. Mobilization and redistribution of major and trace elements during extreme weathering of basalt in Hainan Island, South China[J]. Geochimica et Cosmochimica Acta, 71: 3223-3237. doi: 10.1016/j.gca.2007.03.035

    Mullen E D. 1983. MnO/TiO2/P2O5: A major element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis[J]. Earth and Planetary Science Letters, 62: 53-62. doi: 10.1016/0012-821X(83)90070-5

    Nesbitt H W, Young G M, Mclennan S M, Keays R R. 1996. Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies[J]. Journal of Geology, 104: 525-542. doi: 10.1086/629850

    Nesbitt H W, Markovics G. 1997. Weathering of granodioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments[J]. Geochimica et Cosmochimica Acta, 61: 1653-1670. doi: 10.1016/S0016-7037(97)00031-8

    Pearce J A, Cann J R. 1973. Tectonic setting of basic volcanic rocks investigated using trace element analyses[J]. Earth and Planetary Science Letters, 19: 290-300. doi: 10.1016/0012-821X(73)90129-5

    Pearce J A, Harris N B W, Tindle A G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25: 956-983. doi: 10.1093/petrology/25.4.956

    Pearce J A, Peate D W. 1995. Tectonic implications of the composition of volcanic arc magmas[J]. Annual Review of Earth and Planetary Science, 23: 251-285. doi: 10.1146/annurev.ea.23.050195.001343

    Rakociński M, Zatoń M, Marynowski L, Gedl P, Lehmann J. 2018. Redox conditions, productivity, and volcanic input during deposition of uppermost Jurassic and Lower Cretaceous organic-rich siltstones in Spitsbergen, Norway[J]. Cretaceous Research, 89: 126-147. doi: 10.1016/j.cretres.2018.02.014

    Roberts B, Merriman R J. 1990. Cambrian and Ordovician metabentonites and their relevance to the origins of associated mudrocks in the northern sector of the Lower Palaeozoic Welsh Margina basin[J]. Geological Magazine, 127: 31-43. doi: 10.1017/S001675680001414X

    Rollinson H. 1993. Using geochemical data: Evaluation, presentation, interpretation[M]. Longman Scienice and Technology Publication. London, 1-352.

    Shu Liangshu. 2006. Predevonian tectonic evolution of South China: From Cathaysian Block to Caledonian Period Folded orogenic belt[J]. Geological Journal of China Universities, 12(4): 418-431(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_gxdzxb200604002.aspx

    Siir S, Kallaste T, Kiipli T, Hints R. 2015. Internal stratification of two thick Ordovician bentonites of Estonia: Deciphering primary magmatic, sedimentary, environmental and diagenetic signatures[J]. Estonian Journal of Earth Sciences, 64: 140-158. doi: 10.3176/earth.2015.23

    Song Teng, Chen Ke, Bao Shujing, Guo Tianlin, Lei Yuxue, Wang Yi, Meng Fanyang, Wang Peng. 2018. The discovery of shale gas in Wufeng-Longmaxi Formation at Hongdi-1 Well on the northern limb of Shennongjia anticline in northwestern Hubei Province[J]. Geology in China, 45(1): 195-196(in Chinese with English abstract). http://www.researchgate.net/publication/325687463_The_discovery_of_shale_gas_in_Wufeng-Longmaxi_Formation_at_Hongdi-1_Well_on_the_northern_limb_of_Shennongjia_anticline_in_northwestern_Hubei_Province

    Su Wenbo, He Longqing, Wang Yongbiao, Gong Shuyun, Zhou Huyun. 2002. K-bentonite beds and high-resolution integrated stratigraphy of the uppermost Ordovician Wufeng and the lowest Silurian Longmaxi formations in South China[J]. Science in China (Series D), 32(3): 207-209(in Chinese with English abstract).

    Su Wenbo, Li Zhiming, Frank R Ettensohn, Markes E Johnson, Warren D Huff, Wang Wei, Ma Chao, Li Lu, Zhang Lei, Zhao Huijing. 2007. Distribution of black shale in the Wufeng-Longmaxi Formations (Ordovician-Silurian), South China: Major controlling factors and implications[J]. Earth Science——Journal of China University of Geosciences, 32(6): 819-827(in Chinese with English abstract). http://www.iacademic.info/user-api/na/articleBybaidu?j=61530&a=594556533251870783

    Su W B, He L Q, Wang Y B, Gong S Y, Zhou H Y. 2003. K-bentonite beds and high-resolution integrated stratigraphy of the uppermost Ordovician Wufeng and the lowest Silurian Longmaxi formations in South China[J]. Science in China (Series D), 46: 1121-1133. doi: 10.1360/01yd0225

    Su Wenbo, Li Zhiming, Shi Xiaoying, Zhou Hongrui, Huang Siji, Liu Xiaoming, Chen Xiaoyu, Zhang Jian, Yang Hongmei, Jia Liujing, W D Huff, F R Ettensohn. 2006. K-bentonites and black shales from the Wufeng-Longmaxi Formations(Early Paleozoic, South China) and Xiamaling Formation(Early Neoproterozoic, North China)——implications for tectonic processes during two important transitions[J]. Earth Science Frontiers, 13(6): 82-95(in Chinese with English abstract). http://www.researchgate.net/publication/277710345_K-bentonites_and_black_shales_from_the_Wufeng-Longmaxi_formations_Early_Paleozoic_South_China_and_Xiamaling_Formation_Early_Neoproterozoic_North_China_--_Implications_for_tectonic_processes_during_two

    Su W B, Huff W D, Ettensohn F R, Liu X M, Zhang J E, Li Z M. 2009. K-bentonite, black-shale and flysch successions at the Ordovician-Silurian transition, South China: Possible sedimentary responses to the accretion of Cathaysia to the Yangtze Block and its implications for the evolution of Gondwana[J]. Gondwana Research, 15: 111-130. doi: 10.1016/j.gr.2008.06.004

    Su W B, Li Z M, Ettensohn F R, Johnson M E, Huff W D, Wang W, Ma C. 2007. Tectonic and eustatic control on the distribution of black-shale source beds in the Wufeng and Longmaxi Formations (Ordovician-Silurian), South China[J]. Frontier of the Earth Sciences, 1: 470-481. doi: 10.1007/s11707-007-0058-6

    Taylor S R, McLennan S M. 1985. The Continental Crust: Its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks[M]. Oxford: Blackwell Scientific, 1-311.

    Teale C T, Spears D A. 1986. The mineralogy and origin of some Silurian bentonites, Welsh Borderland, U.K.[J]. Sedimentology, 33: 757-765.

    Trela W, Bak E, Pańczyk M. 2018. Upper Ordovician and Silurian ash beds in the Holy Cross Mountains, Poland: Preservation in mudrock facies and relation toatmospheric circulation in the Southern Hemisphere[J]. Journal of Geological Society, 175: 352-360. doi: 10.1144/jgs2017-026

    Türkmenoǧlu A G, Bozkaya Ö, Göncüoǧlu M C, ünlüce Ö, Yilmaz İ Ö, Okuyucu C. 2015. Clay mineralogy, chemistry, and diagenesis of Late Devonian K-bentonite occurrences in northwestern Turkey[J]. Turkish Journal of Earth Sciences, 24: 209-229. doi: 10.3906/yer-1501-14

    Wan Bin, Guan Chengguo, Zhou Chuanming, Meng Fanwei, Pang Ke, Tang Qing, Rao Xin. 2013. Petrologic and geochemical characteristics of K-bentonites from the basal Ediacaran in Yangtze Platform, South China and their geological significance[J]. Acta Petrologica Sinica, 29(12): 4373-4386(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201312022.htm

    Wang X D, Cawood P A, Zhao H, Zhao L S, Grasby S E, Chen Z Q, Wignall P B, Lv Z Y, Han C. 2018. Mercury anomalies across the end Permian mass extinction in South China from shallow and deep water depositional environments[J]. Earth and Planetary Science Letters, 496: 159-167. doi: 10.1016/j.epsl.2018.05.044

    Wang Yuman, Li Xinjing, Dong Dazhong, Zhang Chenchen, Wang Shufang. 2017. Main factors controlling the sedimentation of high-quality shale inWufeng-Longmaxi Fm, Upper Yangtze region[J]. Natural Gas Industry, 37(4): 9-20(in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S2352854017301250

    Wang Longwu, Zhang Jianfang, Chen Jianhua, Zhang Yuandong, Chen Xiaoyou, Zhu Chaohui, Liu Jian, Hu Yanhua, Ma Xuan. 2015. Chararteristics of Katian(Late Ordovician) K-Bentonites from An Ji, Zhe Jiang Province[J]. Journal of Stratigraphy, 39(2): 155-168(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DCXZ201502004.htm

    Winchester J A, Floyd P A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 20: 325-343. doi: 10.1016/0009-2541(77)90057-2

    Wood D A. 1980. The application of a Th-Hf-Ta diagram to problem of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province[J]. Earth and Planetary Science Letters, 50: 11-30. doi: 10.1016/0012-821X(80)90116-8

    Xi Zhandong, Tang Shuheng, Wang Jing, Zhang Zhen, Li Yanpeng, Gong Minghui, Xiao Heqi. 2018. Evalution parameters study of selecting favorable shale gas areas in Southern China[J]. Acta Geologica Sinica, 92(6): 1313-1323(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DZXE201806014&dbcode=CJFD&year=2018&dflag=pdfdown

    Xie Shangke, Wang Zhengjiang, Wang Jian, Zhuo Jiewen. 2012. LA-ICP-MS zircon U-Pb dating of the bentonites from the uppermost part of the Ordovician Wufeng Formation in the Haoping section, Taoyuan, Hunan[J]. Sedimentary Geology and Tethyan Geology, 32(4): 65-69(in Chinese with English abstract). http://www.researchgate.net/publication/348264601_LA-ICP-MS_zircon_U-Pb_dating_of_the_bentonites_from_the_uppermost_part_of_the_Ordovician_Wufeng_Formation_in_the_Haoping_section_Taoyuan_Hunan

    Xiong Xiaohui, Wang Jian, Xiong Guoqing, Wang Zhengjiang, Men Yupeng, Zhou Xiaolin, Zhou Yexin, Yang Xiao, De Qi. 2018. Shale gas geological characteristics of Wufeng and Longmaxi Formations in Northeast Chongqing and its exploration direction[J]. Acta Geologica Sinica, 92 (9): 1948-1958(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201809013.htm

    Yan D T, Wang H, Fu Q L, Chen Z H, He J, Gao Z. 2015. Geochemical characteristics in the Longmaxi Formation (Early Silurian) of South China: Implications for organic matter accumulation[J]. Marine and Petroleum Geology, 65: 290-301. doi: 10.1016/j.marpetgeo.2015.04.016

    Yang Ping, Wang Zhengjiang, Yu Qian, Liu Wei, Liu Jiahong, Xiong Guoqing, He Jianglin, Yang Fei. 2019. An resources potential analysis of Wufeng-Longmaxi Formation shale gas in the southwestern margin of Sichuan Basin[J]. Geology in China, 46(3): 601-614(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201903012.htm

    Yang R, He S, Hu Q H, Hu D F, Yi J Z. 2017. Geochemical characteristics and origin of natural gas from Wufeng-Longmaxi shales of the Fuling gas field, Sichuan Basin (China)[J]. International Journal of Coal Geology, 171: 1-11. doi: 10.1016/j.coal.2016.12.003

    Yang Ying. 2011. Zircon U-Pb geochronology and genesis of K-bentonite at the Paleozoic-Mesozoic key stratigraphic boundary of South China[M]. China University of Geosciences(Wuhan), 1-72(in Chinese with English abstract).

    Yin Hongfu, Wu Shunbao, Du Yuansheng, Peng Yuanqiao. 1999. South China defined as part of Tethyan archipelagic ocean system[J]. Earth Science, 24(1): 1-12(in Chinese with English abstract). http://ci.nii.ac.jp/naid/10026141175

    Zhang G W, Guo A L, Wang Y J, Li S Z, Dong Y P, Liu S F, He D F, Cheng S Y, Lu R K, Yao A P. 2013. Tectonics of South China continent and its implications[J]. Science China: Earth Sciences, 56: 1804-1828. doi: 10.1007/s11430-013-4679-1

    Zhao J H, Jin Z J, Jin Z K, Geng Y K, Wen X, Yan C N. 2016. Applying sedimentary geochemical proxies for paleoenvironment interpretation of organic-rich shale deposition in the Sichuan Basin, China[J]. International Journal of Coal Geology, 163: 52-71. doi: 10.1016/j.coal.2016.06.015

    Zheng B, Mou C, Zhou R, Wang X, Xiao Z, Chen Y. 2020a. Nature and origin of the volcanic ash beds near the Permian-Triassic boundary in South China: New data and their geological implications[J]. Geological Magazine, 157: 677-689. doi: 10.1017/S001675681900133X

    Zheng B, Zhou R, Mou C, Wang X, Xiao Z, Chen Y. 2020b. Nature of the Late Ordovician-Early Silurian Xiaohe section, Hunan-Hubei area, South China: Implications for the Kwangsian Orogeny[J]. International Geology Review, 62: 1262-1272. doi: 10.1080/00206814.2019.1644541

    Zhou Mingzhong, Luo Taiyi, Huang Zhilong, Long Hansheng, Yang Yong. 2007. Advances in research in K-bentonite[J]. Acta Mineralogical Sinica, 27(3): 351-359(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KWXB2007Z1016.htm

    Zhou M Z, Luo T Y, Huff W D, Liu S R. 2014. Prominent Lower Cambrian K-bentonites in South China: Distribution, mineralogy, and geochemistry[J]. Journal of Sedimentary Research, 84: 842-853. doi: 10.2110/jsr.2014.66

    陈孝红, 张保民, 张国涛, 陈林, 张淼, 李培军. 2018. 湖北宜昌地区奥陶系五峰组-志留系龙马溪组获页岩气高产工业气流[J]. 中国地质, 45(1): 199-200. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201801021.htm
    陈旭, 戎嘉余, Rowley D B, 张进, 张元动, 詹仁斌. 1995. 对华南早古生代板溪洋的质疑[J]. 地质论评, 41(5): 389-400. doi: 10.3321/j.issn:0371-5736.1995.05.001
    冯宝华. 1989. 我国北方石炭-二叠纪火山灰沉积水解改造而成的高岭岩[J]. 沉积学报, 7(1): 101-108. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB198901011.htm
    冯伟明, 李嵘, 赵瞻, 余谦, 杨瀚, 谢渊, 叶定南. 2021. 滇东北DD1井五峰组-龙马溪组地层界线划分及沉积环境演变[J]. 中国地质, 48(1): 297-308.
    胡艳华, 刘健, 周明忠, 汪方跃, 丁兴, 凌明星, 孙卫东. 2009a. 奥陶纪和志留纪钾质斑脱岩研究评述[J]. 地球化学, 38(4): 390-401. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200904011.htm
    胡艳华, 钱俊锋, 褚先尧, 徐岩, 顾明光, 李建峰. 2012. 华南加里东运动研究综述及其性质初探1[J]. 科技通报, 28(11): 42-48. doi: 10.3969/j.issn.1001-7119.2012.11.011
    胡艳华, 周继彬, 宋彪, 李卫, 孙卫东. 2008. 中国湖北宜昌王家湾剖面奥陶系顶部斑脱岩SHRIMP锆石U-Pb定年[J]. 中国科学(D辑): 地球科学, 38(1): 72-77. doi: 10.3321/j.issn:1006-9267.2008.01.007
    胡艳华, 孙卫东, 丁兴, 汪方跃, 凌明星, 刘健. 2009b. 奥陶纪-志留纪边界附近火山活动记录: 来华南周缘钾质斑脱岩的信息[J]. 岩石学报, 25(12): 3298-3308. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200912019.htm
    姜生玲, 李博, 彭传圣, 胡晓兰, 洪克岩, 朱亮亮. 2018. 来凤咸丰区块LD2井五峰-龙马溪组页岩发育特征及含气性分析[J]. 地质与勘探, 54(1): 203-210. doi: 10.3969/j.issn.0495-5331.2018.01.022
    姜尧发, 唐跃刚, 代世峰, 邹星, 钱汉东, 周国庆. 2006. 浙江煤山二叠系-三叠系界线附近黄铁矿及其硫同位素组成研究[J]. 地质学报, 80(8): 1202-1207. doi: 10.3321/j.issn:0001-5717.2006.08.014
    李斌, 胡博文, 罗群. 2017. 湖南保靖地区龙马溪组层序地层及沉积微相研究[J]. 地质与勘探, 53(6): 193-203. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201706019.htm
    廖志伟, 胡文瑄, 王小林, 曹剑, 姚素平, 万野. 2016. 下扬子PTB界线深水相区黏土岩的火山成因研究及其对LPME的指示意义[J]. 地质学报, 90(4): 785-800. doi: 10.3969/j.issn.0001-5717.2016.04.013
    刘宝珺, 许效松. 1994. 中国南方岩相古地理图集(震旦纪-三叠纪). 北京: 科学出版社, 1-188.
    罗华, 蟠龙克, 何仁亮. 2017. 湖北省麻阳寨地区晚奥陶-早志留世龙马溪组斑脱岩地球化学特征及其地质意义[J]. 资源环境与工程, 31(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK201604001.htm
    罗华, 何仁亮, 蟠龙克, 杨成, 余国飞. 2016. 湖北宣恩县麻阳寨晚奥陶-早志留世龙马溪组斑脱岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 资源环境与工程, 30(4): 547-550. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK201604001.htm
    舒良树. 2006. 华南前泥盆纪构造演化: 从华夏地块到加里东期造山带[J]. 高校地质学报, 12(4): 418-431. doi: 10.3969/j.issn.1006-7493.2006.04.002
    宋腾, 陈科, 包书景, 郭天旭, 雷玉雪, 王亿, 孟凡洋, 王鹏. 2018. 鄂西北神农架背斜北翼(鄂红地1井)五峰-龙马溪组钻获页岩气显示[J]. 中国地质, 45(1): 195-196. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201801019.htm
    苏文博, 何龙清, 王永标, 龚淑云, 周湖云. 2002. 华南奥陶-志留系五峰组及龙马溪组底部斑脱岩与高分辨综合地层[J]. 中国科学(D辑), 32(3): 207-209. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200203004.htm
    苏文博, 李志明, Frank R Ettensohn, Markes E Johnson, Warren D Huff, 王巍, 马超, 李录, 张磊, 赵慧静. 2007. 华南五峰组-龙马溪组黑色岩系时空展布的主控因素及其启示[J]. 地球科学——中国地质大学学报, 32(6): 819-827. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200706014.htm
    苏文博, 李志明, 史晓颖, 周洪瑞, 黄思骥, 刘晓茗, 陈晓雨, 张继恩, 杨红梅, 贾柳静, W D Huff, F R Ettensohn. 2006. 华南五峰组-龙马溪组与华北下马岭组的钾质斑脱岩及黑色岩系——两个地史转折期板块构造运动的沉积响应[J]. 地学前缘, 13(6): 82-95. doi: 10.3321/j.issn:1005-2321.2006.06.011
    万斌, 关成国, 周传明, 孟凡巍, 庞科, 唐卿, 饶馨. 2013. 华南埃迪卡拉系底部钾质斑脱岩的岩石地球化学特征及其地质意义[J]. 岩石学报, 29(12): 4373-4386. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201312022.htm
    汪隆武, 张建芳, 陈津华, 张元动, 陈小友, 朱朝晖, 刘健, 胡艳华, 马譞. 2015. 浙江安吉上奥陶统钾质斑脱岩特征[J]. 地层学杂志, 39(2): 155-168. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201502004.htm
    王玉满, 李新景, 董大忠, 张晨晨, 王淑芳. 2017. 上扬子地区五峰组-龙马溪组优质页岩沉积主控因素[J]. 天然气工业, 37(4): 9-20. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201704004.htm
    郗兆栋, 唐书恒, 王静, 张振, 李彦朋, 龚明辉, 肖何琦. 2018. 中国南方海相页岩气选区关键参数探讨[J]. 地质学报, 92(6): 1313-1323. doi: 10.3969/j.issn.0001-5717.2018.06.014
    谢尚克, 汪正江, 王剑, 卓皆文. 2012. 湖南桃源郝坪奥陶系五峰组顶部斑脱岩LA-ICP-MS锆石U-Pb年龄[J]. 沉积与特提斯地质, 32(4): 65-69. doi: 10.3969/j.issn.1009-3850.2012.04.010
    熊晓辉, 王剑, 熊国庆, 汪正江, 门玉澎, 周小琳, 周业鑫, 杨潇, 邓奇. 2018. 渝东北地区五峰组-龙马溪组页岩气地质特征及其勘探方向探讨[J]. 地质学报, 92(9): 1948-1958. doi: 10.3969/j.issn.0001-5717.2018.09.013
    杨平, 汪正江, 余谦, 刘伟, 刘家洪, 熊国庆, 何江林, 杨菲. 2019. 四川盆地西南缘五峰-龙马溪组页岩气资源潜力分析[J]. 中国地质, 46(3): 601-614. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201903012.htm
    杨颖. 2011. 华南古-中生代关键地层界线附近斑脱岩锆石U-Pb年代学及成因[M]. 中国地质大学(武汉), 1-72.
    殷鸿福, 吴顺宝, 杜远生, 彭元桥. 1999. 华南是特提斯多岛洋体系的一部分[J]. 地球科学, 24(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX901.000.htm
    张国伟, 郭安林, 王岳军, 李三忠, 董云鹏, 刘少峰, 何登发, 程顺有, 鲁如魁, 姚安平. 2013. 中国华南大陆构造与问题[J]. 中国科学: 地球科学, 43(10): 1553-1582. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201310003.htm
    周明忠, 罗泰义, 黄智龙, 龙汉生, 杨勇. 2007. 钾质斑脱岩的研究进展[J]. 矿物学报, 27(3): 351-359. doi: 10.3321/j.issn:1000-4734.2007.03.017
  • 期刊类型引用(4)

    1. 王万能,潘江涛,袁永盛,张耀堂,李仕忠,田瑜峰,庞占基. 上扬子西缘早古生代斑脱岩来源及其对宜昌上升的指示意义. 岩石学报. 2024(07): 2135-2152 . 百度学术
    2. 葛祥英,牟传龙,门欣,侯乾,郑斌嵩,梁薇. 四川盆地五峰—龙马溪组黑色页岩中钾质斑脱岩U-Pb年代学及其成因环境研究. 沉积与特提斯地质. 2024(03): 641-655 . 百度学术
    3. 王万能,庞占基,王浩宇,王东晖,于一帆. 扬子板块西缘下志留统龙马溪组底部斑脱岩研究——锆石U-Pb测年、微量元素特征及地质意义. 地质与资源. 2023(06): 691-698 . 百度学术
    4. 刘建清,何利,江永富,何佳伟,何平. 四川雷波地区下寒武统麦地坪含磷地层研究及磷矿资源潜力分析. 中国地质. 2022(06): 1908-1922 . 本站查看

    其他类型引用(5)

图(7)  /  表(4)
计量
  • 文章访问数:  2241
  • HTML全文浏览量:  653
  • PDF下载量:  4060
  • 被引次数: 9
出版历程
  • 收稿日期:  2018-10-08
  • 修回日期:  2019-04-14
  • 网络出版日期:  2023-09-25
  • 刊出日期:  2021-06-24

目录

/

返回文章
返回
x 关闭 永久关闭