• The Core Journal of China
  • Included in Chinese Science Citation Database
  • The Key Magazine of China technology
  • Frontrunner 5000—Top Articles in Outstanding S&T Journals of China
  • Included in Scopus
  • Included in Chemical Abstracts (CA)
  • Included in Russian Abstract Journal (AJ)
Advanced Search
XU Qing, LIU Xiao-duan, TANG Qi-feng, LIU Jiu-chen, . High iodic geochemical characteristics of the groundwater in central Shanxi Province[J]. GEOLOGY IN CHINA, 2010, 37(3): 809-815.
Citation: XU Qing, LIU Xiao-duan, TANG Qi-feng, LIU Jiu-chen, . High iodic geochemical characteristics of the groundwater in central Shanxi Province[J]. GEOLOGY IN CHINA, 2010, 37(3): 809-815.

High iodic geochemical characteristics of the groundwater in central Shanxi Province

More Information
  • Abstract:The study area is located in southwest Taiyuan basin of Shanxi Province. Totally 950 water samples were collected from the shallow wells (≤50 m), middle wells (50-200 m) and deep wells ≥200 m) . With ICP-MS and HPLC-ICP-MS methods, the authors determined the total iodine content and inorganic iodine content, which included iodine ion and iodine acid radical (I- and IO-3). The results indicate that the proportions of iodic concentration that exceeds the standard are 76.8%, 70.3% and 85.2% in groundwater of three layers, respectively. The highest iodic concentration in the shallow groundwater is up to 4117μg/L, which is 27 times higher than the national standard of drinking water (150μg/L). The main form of iodine in the groundwater is ionized iodine, with small amounts of iodate. About 60% water samples have organic iodine. The main causes for high iodine concentration in groundwater are special topography and aquifers in the study area, which results in hindered movement of groundwater. Furthermore, local agricultural irrigation using the middle or deep layer groundwater and salinization of surface soils in the low-lying lands has led to the increase of iodine in the shallow layer groundwater. Iodic source in groundwater is closely related to geological environment of marine, lacustrine and fluvial sediments. The results could offer scientific means to reforming water projects in high iodic water areas of China.
  • Related Articles

    [1]WANG Xinwei, WANG Tinghao, LI Haiquan, ZHANG Xuan, LUO Lu, LIU Huiying, WANG Simin, XIANG Caifu. Evolution of karst geothermal system and its geothermal resource potential in Taiyuan Basin[J]. GEOLOGY IN CHINA, 2022, 49(3): 716-731. DOI: 10.12029/gc20220304
    [2]LÜ Xiaoli, LIU Jingtao, ZHOU Bing, ZHU Liang. Fe and Mn distribution of groundwater in the Tacheng Basin, Xinjiang and its impact of human activities[J]. GEOLOGY IN CHINA, 2020, 47(6): 1765-1775. DOI: 10.12029/gc20200613
    [3]CHEN Song, GUI Herong. The age and isotopic characteristics of groundwater in Taiyuan Formation limestone aquifer of the Huaibei coalfield[J]. GEOLOGY IN CHINA, 2019, 46(2): 337-345. DOI: 10.12029/gc20190210
    [4]LI Chengzhu, MA Hongyun, WU Yaoguo. An Inorganic Index Dataset of Groundwater in the Guanzhong Basin (2015)[J]. GEOLOGY IN CHINA, 2018, 45(S2): 23-29. DOI: 10.12029/gc2018Z203
    [5]MA Hongyun, LI Chengzhu, ZHANG Jun. Inorganic Indicator Dataset for Groundwater in Ordos Basin (2014-2015)[J]. GEOLOGY IN CHINA, 2018, 45(S1): 27-31. DOI: 10.12029/gc2018Z102
    [6]SUN Houyun, MAO Qigui, WEI Xiaofeng, ZHANG Huiqiong, XI Yuze. Hydrogeochemical characteristics and formation evolutionary mechanism of the groundwater system in the Hami basin[J]. GEOLOGY IN CHINA, 2018, 45(6): 1128-1141. DOI: 10.12029/gc20180604
    [7]LIAO Lei, HE Jiang-tao, ZENG Ying, PENG Cong, HUANG De-liang. A study of nitrate background level of shollow groundwater in the Liujiang Basin[J]. GEOLOGY IN CHINA, 2016, 43(2): 671-682. DOI: 10.12029/gc20160226
    [8]WANG Yan-xin, SU Chun-li, XIE Xian-jun, XIE Zuo-ming. The genesis of high arsenic groundwater: a case study in Datong basin[J]. GEOLOGY IN CHINA, 2010, 37(3): 771-780. DOI: 10.12029/gc20100332
    [9]ZHANG Er-yong, LI Chang-qing, LI Xu-feng. Regional groundwater numerical modeling: a case study of the North China plain[J]. GEOLOGY IN CHINA, 2009, 36(4): 920-926. DOI: 10.12029/gc20090421
    [10]Bai Li-ping, Wang Ye-yao, Wang Jin-sheng. The numerical model based groundwater level early-warning system:a case study of Linfen basin[J]. GEOLOGY IN CHINA, 2009, 36(1): 246-253. DOI: 10.12029/gc20090123
  • Cited by

    Periodical cited type(15)

    1. 马梓萌,阎赞,何梦莹,戴壹,令兴旺,李辉. 磷酸二氢铵体系下焙烧条件对金红石精矿提质降杂影响研究. 矿业工程. 2024(04): 36-39 .
    2. 毛素荣,文伟,杨晓军,钟乐乐,余新文,何婷,张才学. 四川某铜矿尾矿中金红石工艺矿物学研究. 现代矿业. 2024(07): 176-179 .
    3. 曹兰兰,贺永东,刘洪贵,陈国洋. 利用铝酸钠固化剂处理钛冶金熔盐氯化废渣研究. 钛工业进展. 2024(06): 33-38 .
    4. 王星,周凌志. 某含锆铬钛磁铁矿工艺矿物学及技术前景分析. 云南冶金. 2024(06): 30-38 .
    5. 王莉,张荣臻,杜保峰,李栋,茹朋,耿爱宾,袁稳,吕国营. 河南省泌阳县付金川金红石矿床成矿时代及成因探讨. 矿产勘查. 2024(12): 2187-2197 .
    6. 刘志宏,肖书明,张少琴,王辉. 江苏省金红石矿成矿地质特征、开发利用现状与成矿远景. 中国矿业. 2023(07): 182-187 .
    7. 夏传波,张文娟,姜云,田兴磊,王志明,赵伟. 钛铁矿石中铁的化学物相分析. 冶金分析. 2023(07): 60-68 .
    8. 车东,张照志,潘昭帅,王建平,赵元艺,邢恩袁. 钛矿资源禀赋及未来10年钛产品需求预测. 中国地质. 2023(04): 1058-1069 . 本站查看
    9. 孙宏伟,许康康,左立波,任军平,唐文龙,古阿雷,吴兴源,CHIPIL AUKA Mukofu,ALPHET Phaskani Dokowe. 锆-钛矿产资源分布特点、类型、供需格局及开发利用现状. 中国地质. 2023(04): 1070-1081 . 本站查看
    10. 蒋天元,李永平. 四川雅安烟溪沟钛矿成矿地质特征及成矿机制浅析. 四川有色金属. 2023(03): 29-32 .
    11. 屈金芝,张艳松,张艳,范晓蕾. 基于熵权法TOPSIS模型中国钛资源供应安全评价. 资源与产业. 2022(01): 26-36 .
    12. 魏本赞,卢辉雄,汪冰,张恩. 中祁连大白石头沟钛铁矿床地质特征与成因探讨. 地质与资源. 2022(04): 492-499 .
    13. 曹玉川,李辉跃,李禄宏,董英择,安登极,许海峰,周瑜林,王洪彬. 攀西地区某钒钛磁铁矿选钛工艺研究. 钢铁钒钛. 2021(02): 91-98 .
    14. 章鑫,罗依珍,周元涛,谢燕霄. 云南富宁良子老寨钛铁矿成矿规律和矿床成因. 矿产勘查. 2021(10): 2026-2034 .
    15. 肖玮,邵延海,尉佳怡,张铂华,吴维明,吴海祥. 钛铁矿浮选药剂研究现状及展望. 矿产保护与利用. 2021(05): 160-167 .

    Other cited types(16)

Catalog

    Article views (2869) PDF downloads (2946) Cited by(31)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return