• The Core Journal of China
  • Included in Chinese Science Citation Database
  • The Key Magazine of China technology
  • Frontrunner 5000—Top Articles in Outstanding S&T Journals of China
  • Included in Scopus
  • Included in Chemical Abstracts (CA)
  • Included in Russian Abstract Journal (AJ)
Advanced Search
Zhao Chenhui, Wang Denghong, Wang Chenghui, Liu Shanbao, Qin Jinhua, Zhu Zeying, Zhao Yunbiao, Liu Ze, Liu Jinyu, Li Yang, Liu Xinxing. 2024. Geochemical characteristics of global leucogranite and their mineralized relationship with rare metals[J]. Geology in China, 51(5): 1601−1616. DOI: 10.12029/gc20230309006
Citation: Zhao Chenhui, Wang Denghong, Wang Chenghui, Liu Shanbao, Qin Jinhua, Zhu Zeying, Zhao Yunbiao, Liu Ze, Liu Jinyu, Li Yang, Liu Xinxing. 2024. Geochemical characteristics of global leucogranite and their mineralized relationship with rare metals[J]. Geology in China, 51(5): 1601−1616. DOI: 10.12029/gc20230309006

Geochemical characteristics of global leucogranite and their mineralized relationship with rare metals

Funds: Supported by the projects of National Key Research and Development Program (No.2021YFC2901900, No.2021YFC2901905), China Geological Survey (No.DD20221684, No.DD20190379, No.DD20221695) and the National Natural Science Foundation of China (No.41902037).
More Information
  • Author Bio:

    ZHAO Chenhui, male, born in 1996, doctoral candidate, majors in the mineral resources prospecting and exploration; E-mail: GEOChenhui@163.com

  • Corresponding author:

    WANG Denghong, male, born in 1967, researcher, mainly engaged in mineral resource; E-mail: wangdenghong@vip.sina.com.

  • Received Date: March 08, 2023
  • Revised Date: May 16, 2023
  • This paper is the result of mineral exploration engineering.

    Objective 

    Recently, leucogranites have become a hot spot in the study of petrogenesis and rare metal metallogeny. However, the spatiotemporal distribution characteristics of global leucogranite are still unclear. For further prospecting of rare metals in China, it is essentially to clarify the spatiotemporal distribution of leucogranite and the metallogenic specialization between leucogranite and rare metal deposits.

    Methods 

    We collect 1155 geochemical data from 115 leucogranites worldwide, and combine with our recently achievements from the Nanling Region, Western Sichuan, Southern Tibet, and Altai.

    Results 

    In reference to the composition, this study reveals that the content of SiO2 in leucogranite is exceed 1% higher than the global average value of granite, while the REE content of the rocks with rare metal mineralization is extremely low. Spatially, the content of SiO2 and ALK (Na2O+K2O) of leucogranites in the Hercynian orogenic belt in Central and Western Europe are lower than those of the Himalayan leucogranites, as well as those of Western China. Meanwhile, the SiO2 and ALK content of leucogranite in Western China are lower than Eastern China. Both leucogranites in Central and Western Europe and North America are rich in P2O5. The highest values of Li, Be, Nb, Ta, Ga, Rb and Sn in the samples appear in Central and Western Europe, while the highest values of W present in eastern China. Cenozoic SiO2 and ALK content of leucogranite were higher than Paleozoic but lower than Mesozoic. Notablely, Paleozoic leucogranite are enriched in P2O5. Besides, tourmaline is a vital indicator of Neoproterozoic leucogranite.

    Conclusions 

    The mineralized leucogranite are generally lack of magmatic garnet. Those leucogranite with feature of A/CNK>1.2. Rb/Sr>1, ΣREE>10×10−6 are mostly related to Sn–W–Nb–Ta mineralization, while Rb/Sr>1, ΣREE<10×10−6 of leucogranite more akin to Li–Sn–Nb–Ta–Be mineralization. All the data indicate that the Mesozoic leucogranites in Eastern China are the most evolved leucogranites worldwide and the best mineralization potential.

    Highlights
    The Mesozoic leucogranites in Eastern China have the highest degree of evolution compared with other regions; The content of garnet, A/CNK, Rb/Sr, and ΣREE of leucogranite can be used as quantitative indicators of metallogenic specialization to evaluate the potential of the leucogranite.
  • [1]
    Braun I, Raith M, Kumar G R, Ravindra. 1996. Dehydration–melting phenomena in Leptynitic gneisses and the generation of leucogranites: A case study from the Kerala Khondalite Belt, Southern India[J]. Journal of Petrology, 37(6): 1285−1305. doi: 10.1093/petrology/37.6.1285
    [2]
    Breiter K, Ďurišová J, Hrstka T, Korbelová Z, Vaňková M, Galiová M V, Kanický V, Rambousek P, Knésl I, Dobeš P, Dosbaba M. 2017. Assessment of magmatic vs. metasomatic processes in rare–metal granites: A case study of the Cínovec/Zinnwald Sn–W–Li deposit, Central Europe[J]. Lithos, 292–293: 198–217.
    [3]
    Bucholz C E. 2022. Coevolution of sedimentary and strongly peraluminous granite phosphorus records[J]. Earth and Planetary Science Letters, 596: 117795. doi: 10.1016/j.jpgl.2022.117795
    [4]
    Cao H W, Pei Q M, Santosh M, Li G M, Zhang L K, Zhang X F, Zhang Y H, Zou H, Dai Z W, Lin B, Tang L, Yu X. 2022. Himalayan leucogranites: A review of geochemical and isotopic characteristics, timing of formation, genesis, and rare metal mineralization[J]. Earth–Science Reviews, 234: 104229.
    [5]
    Cawood P A, Martin E L, Murphy J B, Pisarevsky S A. 2021. Gondwana’s interlinked peripheral orogens[J]. Earth and Planetary Science Letters, 568: 117057. doi: 10.1016/j.jpgl.2021.117057
    [6]
    Chappell B W, White A J R. 1992. I– and S–type granites in the Lachlan Fold Belt[J]. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83: 1−26. doi: 10.1017/S0263593300007720
    [7]
    Chen B, Jahn B M, Wilde S, Xu B. 2000. Two contrasting Paleozoic magmatic belts in northern Inner Mongolia, China petrogenesis and tectonic implications[J]. Tectonophysics, 328(1/2): 157−182.
    [8]
    Chen Jun, Lu Jianjun, Chen Weifeng, Wang Rucheng, Ma Dongsheng, Zhu Jinchu, Zhang Wenlan, Ji Junfeng. 2008. W–Sn–Nb–Ta–bearing granites in the Nanling Range and their relationship to metallogengesis[J]. Geological Journal of China Universites, 14(4): 459−473 (in Chinese with English abstract).
    [9]
    Clarke, D B, Macdonald, M A, Reynolds, P H, Longstaffe, F J. 1993. Leucogranites from the eastern part of the South Mountain Batholith, Nova Scotia[J]. Journal of Petrology, 34(4): 653−679. doi: 10.1093/petrology/34.4.653
    [10]
    Čuneý M, Marignac C, Weisbrod A. 1992. The Beauvoir topaz–lepidolite albite granite (Massif Central, France): The disseminated magmatic Sn–Li–Ta–Nb–Be mineralization[J]. Economic Geology, 87: 1766−1794. doi: 10.2113/gsecongeo.87.7.1766
    [11]
    Fan Wenbo, Jiang Neng, Zhai Mingguo, Hu Jun. 2019. Phanerozoic garnet–bearing leucogranite in the northern margin of North China Craton: Characters, timing and preliminary petrogenesis study[J]. Acta Petrologica Sinica, 35(7): 2237−2258 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.07.18
    [12]
    Gao L E, Zeng L S, Asimow P D. 2017. Contrasting geochemical signatures of fluid–absent versus fluid–fluxed melting of muscovite in metasedimentary sources: The Himalayan leucogranites[J]. Geology, 45(1): 39−42. doi: 10.1130/G38336.1
    [13]
    Gao L E, Zeng L S, Zhao L H, Gao J H, Shang Z. 2021. Behavior of apatite in granitic melts derived from partial melting of muscovite in metasedimentary sources[J]. China Geology, 4(1): 44−55. doi: 10.31035/cg2021009
    [14]
    Guo Sushu, Li Shuguang. 2007. Petrology and geochemical constraints on the origin of leucogranites[J]. Earth Science Frontiers, 14(6): 290−298 (in Chinese with English abstract).
    [15]
    Harrison T M, Oscar M L, Marty G. 1997. New insights into the origin of two contrasting Himalayan granite belts[J]. Geology, 25(10): 899−902. doi: 10.1130/0091-7613(1997)025<0899:NIITOO>2.3.CO;2
    [16]
    Hua Renmin, Zhang Wenlan, Chen Peirong, Wang Rucheng. 2003. Comparison in the characteristics, origin, and relation metallogeny between granites in Dajishan and Piaotang, Southern Jiangxi, China[J]. Geological Journal of China Universities, 9(4): 609−619 (in Chinese with English abstract).
    [17]
    Jahn B M, Wu F Y, Capdevila R, Martineau F, Zhao Z H, Wang Y X. 2001. Highly evolved juvenile granites with tetrad REE patterns: The Woduhe and Baerzhe granites from the Great Xing'an Mountains in NE China[J]. Lithos, 59(4): 171−198. doi: 10.1016/S0024-4937(01)00066-4
    [18]
    Kawakami T, Kobayashi T. 2006. Trace element composition and degree of partial melting of pelitic migmatites from the Aoyama area, Ryoke metamorphic belt, SW Japan: Implications for the source region of tourmaline[J]. Gondwana Research, 9: 176−188. doi: 10.1016/j.gr.2005.06.009
    [19]
    Le Maitre. 1976. The chemical variability of some common igneous rocks[J]. Journal of Petrology, 17(4): 589−637. doi: 10.1093/petrology/17.4.589
    [20]
    Le Maitre. 2002. Igneous rocks: A Classification and Glossary of Terms[M]. Cambridge: Cambridge University Press, 1–104.
    [21]
    Linnen R L, Čuneý M. 2005. Granite–related rare–element deposits and experimental constraints on Ta–Nb–W–Sn–Zr–Hf mineralization. In: Linnen R L, Samson I M, eds. Rare–Element Geochemistry and Mineral Deposits[J]. Geol Ass Can GAC Short Course Notes, 17: 45−67.
    [22]
    Li Jie, Huang Xiaolong. 2013. Mechanism of Ta–Nb enrichment and magmatic evolution in the Yashan granites, Jiangxi Province, South China[J]. Acta Petrologica Sinica, 29(12): 4311−4322 (in Chinese with English abstract).
    [23]
    Li Tong, Yao Jilong. 1963. The average chemical composition of igneous rocks in China[J]. Acta Geologica Sinica, 43(3): 271−280 (in Chinese with English abstract).
    [24]
    Li X H, Li Z X, Ge W C, Zhou H W, Li W X, Liu Y, Wingate M T D. 2003. Neoproterozoic granitoids in South China: Crustal melting above a mantle plume at ca. 825 Ma?[J]. Precambrian Research, 122(1/4): 45−83.
    [25]
    Liu Hongtao, Zhai Mingguo, Liu Jianming, Sun Shihua. 2002. The Mesozoic granitoids in the northern marginal region of North China Craton: Evolution from post–collisional to anorogenic settings[J]. Acta Petrologica Sinica, 18(4): 433−448 (in Chinese with English abstract).
    [26]
    Liu Yingjun, Cao Liming, Li Zhaolin, Wang Henian, Chu Tongqing, Zhang Jingrong. 1984. Elemental Geochemistry[M]. Beijing: Science Press, 1–204 (in Chinese).
    [27]
    Liu Zhichao. 2013. Geochoronology and Petrogenesis of the Ramba Leucogranite, Tethyan Himalya, Tibet[D]. Beijing: Universtiy of Chinese Academy of Sciences, 1–114 (in Chinese with English abstract).
    [28]
    Moghazi A M, Hassanen M A, Mohamed F H, Ali S. 2004. Late Neoproterozoic strongly peraluminous leucogranites, South Eastern Desert, Egypt: Petrogenesis and geodynamic significance[J]. Mineralogy and Petrology, 81(1/2): 19−41.
    [29]
    Mohamed F H, Hassanen M A. 1997. Geochemistry and petrogenesis of Sikait leucogranite, Egypt: An example of S–type granite in a metapelitic sequence[J]. Geologische Rundschau, 86(1): 81−92. doi: 10.1007/s005310050123
    [30]
    Murphy M A, Yin A, Kapp P, Harrison T M, Manning C E, Ryerson F J, Ding L, Guo J H. 2002. Structural evolution of the Gurla Mandhata detachment system, southwest Tibet: Implications for the eastward extent of the Karakoram fault system[J]. Geological Society of America Bulletin, 114: 428−447. doi: 10.1130/0016-7606(2002)114<0428:SEOTGM>2.0.CO;2
    [31]
    Nabelek P I, Bartlett C D. 1998. Petrologic and geochemical links between the post–collisional Proterozoic Harney Peak leucogranite, South Dakota, USA, and its source rocks[J]. Lithos, 45(1/4): 71−85.
    [32]
    Nabelek P I, Liu M. 1999. Leucogranites in the Black Hills of South Dakota: The consequence of shear heating during continental collision[J]. Geology, 27(6): 523−526. doi: 10.1130/0091-7613(1999)027<0523:LITBHO>2.3.CO;2
    [33]
    Qin Jinhua, Wang Denghong, Wang Yan, Guo Zhiqiang, Liu Shanbao, Huang Fan, Zhao Ruyi. 2024. Metallogenic law and exploration prospect of the middle part of Nanling metallogeny belt[J]. Geology in China, 51(4): 1095−1122 (in Chinese with English abstract).
    [34]
    Raimbault L, Cuney M, Azencott C, Duthou J, Joron J L. 1995. Geochemical evidence for a multistage magmatic genesis of Ta–Sn–Li mineralization in the granite at Beauvoir, French Massif Central[J]. Economic Geology, 90(3): 548−576. doi: 10.2113/gsecongeo.90.3.548
    [35]
    Romer R L, Kroner U, Schmidt C, Legler C. 2022. Mobilization of tin during continental subduction–accretion processes[J]. Geology, 50: 1361−1365.
    [36]
    Rub A K, Stemprok M, Rub M G. 1998. Tantalum mineralization in the apical part of the Cínovec (Zinnwald) granite stock[J]. Mineral Petrology, 63: 199−222. doi: 10.1007/BF01164151
    [37]
    Rudnick R L, Gao S. 2014. Composition of the Continental Crust[M]. Treatise on Geochemistry, 43.
    [38]
    Shen Xiaoming, Zhang Haixiang, Ma Lin. 2013. Discovery of the Late Carboniferous leucogranite in the Southern Altay Range and its tectonic implications[J]. Geotectonica et Metallogenia, 37(4): 721−729 (in Chinese with English abstract).
    [39]
    Sun Y, Gao R H, Li Z W, Wang A D, Han R, Xi Y F, Liu J G. 2022. Composition and evolution of continental crust at orogenic belts: Constraints from a 3–D crustal model of Southeast China[J]. Journal of Geophysical Research: Solid Earth, 127: e2022JB025057. doi: 10.1029/2022JB025057
    [40]
    Sylvester P J. 1998. Post–collisional strongly peraluminous granites[J]. Lithos, 45: 29−44. doi: 10.1016/S0024-4937(98)00024-3
    [41]
    Wang Chenhui, Wang Denghong, Sun Yan, Zhao Zhi, Li Peng, Chen Lei, Li Jiankang, Zhou Fangchun, Yu Yang, Liu Shanbao, Lu Lei, Liu Xinxing, Zhao Ting, Yang Yueqing, Wang Gang, Chen Chen, Chen Zhenyu, Peng Linlin, Chen Binfeng, Wen Chunhua, Feng Wenjie, Huang xinpeng, Cao Shenghua, Leng Shuangliang, Fan Xiyin, Zhou Hui, Huang Huagu, Dang Xiaoliang, Huang Zhibiao, Huang Hongxin. 2022. Investigation and Research Progress of Rare and Rare Earth Minerals in Key Ore–concentrated Areas of South China[M]. Beijing: Science Press, 1–357 (in Chinese).
    [42]
    Wang Denghong, Chen Zhenyu, Haung Fan, Wang Chenghui, Zhao Zhi, Chen Zhenghui, Zhao Zheng, Liu Xinxing. 2014. Disscusion on metallogenic specialization of the magmatic rocks and related issues in the Nanling Region[J]. Geotectonica et Metallogenia, 38(2): 230−238 (in Chinese with English abstract).
    [43]
    Wang Denghong, Dai Hongzhang, Yu Yang, Liu Lijun, Dai Jingjing, Liu Shanbao, Xiong Xin, Wang Yuxian, Fu Xiaofang, Hao Xuefeng, Yang Rong, Pan Meng, Qin Yan, Wang Chenghui, Hou Jianglong, Yuan Linping, Wang Wei, Tang Qi, Feng Yonglai, Rao Kuiyuan, Luo Guanghua, Tian Shihong, Zhao Yue. 2021. Theory, Method and Practice of Investigation and Evaluation of Large Lithium Resource Base: Example for Jiajika Large Lithium Mine in West Sichuan[M]. Beijing: Science Press, 1–458 (in Chinese).
    [44]
    Wang Denghong, Dai Hongzhang, Liu Shanbao, Li Jiankang, Wang Chenghui, Lou Debo, Yang Yueqing, Li Peng. 2022. New progress and trend in ten aspects of lithium exploration practice and theoretical research in China in the past decade[J]. Journal of Geomechanics, 28(5): 743−764 (in Chinese with English abstract).
    [45]
    Wu F Y, Sun D Y, Jahn B M, Wilde S. 2004. A Jurassic garnet–bearing granitic pluton from NE China showing tetrad REE patterns[J]. Journal of Asian Earth Sciences, 23(5): 731–744, 731–744.
    [46]
    Wu Fuyuan, Liu Zhichao, Liu Xiaochi, Ji Weiqiang. 2015 Himalayan leucogranite: Petrogenesis and implications to orogenesis and plateau uplift[J]. Acta Petrologica Sinica, 31(1): 1–36 (in Chinese with English abstract).
    [47]
    Wu Fuyuan, Liu Xiaochi, Ji Weiqiang, Wang Jiamin, Yang Lei. 2017. Highly fractionated granites: Recognition and research[J]. Science China Earth Sciences, 60: 1201−1219. doi: 10.1007/s11430-016-5139-1
    [48]
    van de Flierdt T, Hoernes S, Jung S, Masberg P, Hoffer E, Schaltegger U, Friedrichsen H. 2003. Lower crustal melting and the role of open–system processes in the genesis of syn–orogenic quartz diorite–granite–leucogranite associations constraints from Sr–Nd–O isotopes from the Bandombaai Complex, Namibia[J]. Lithos, 67: 205−226. doi: 10.1016/S0024-4937(03)00016-1
    [49]
    Wei S D, Liu H, Zhao J H. 2018. Tectonic evolution of the western Jiangnan Orogen Constraints from the Neoproterozoic igneous rocks in the Fanjingshan region, South China[J]. Precambrian Research, 318: 89−102. doi: 10.1016/j.precamres.2018.10.006
    [50]
    Xiang L, Wang R C, Romer R L, Che X D, Hu H, Xie L, Tian E N. 2020. Neoproterozoic Nb–Ta–W–Sn bearing tourmaline leucogranite in the western part of Jiangnan Orogen: Implications for episodic mineralization in South China[J]. Lithos, 360–361: 105450.
    [51]
    Yao J L, Shu L S, Santosh M., Zhao G C. 2014. Neoproterozoic arc–related mafic–ultramafic rocks and syn–collision granite from the western segment of the Jiangnan Orogen, South China: Constraints on the Neoproterozoic assembly of the Yangtze and Cathaysia Blocks[J]. Precambrian Research, 243: 39−62. doi: 10.1016/j.precamres.2013.12.027
    [52]
    Yuan Zhongxin, Bai Ge, Yang Yueqing. 1987. A discussion on petrogenesis of rare metal granite[J]. Mineral Deposit, 6(1): 88−96 (in Chinese with English abstract).
    [53]
    Zeng Lingsen, Gao Li’e. 2017. Cenozoic crustal anatexis and the leucogranites in the Himalayan collisional orogenic belt[J]. Acta Petrologica Sinica, 33(5): 1420−1444 (in Chinese with English abstract).
    [54]
    Zhao Zhi, Wang Denghong, Wang Chenghui, Wang Zhen, Zou Xinyong, Feng Wenjie, Zhou hui, Huang Xinpeng, Huang Huagu. 2019. Progress in prospecting and research of ion– adsorption type REE deposits[J]. Acta Geologica Sinica, 93(6): 1454−1465 (in Chinese with English abstract).
    [55]
    Zhu Xiaohui, Zhu Tao, Zhang Xin, Xi Rengang, Meng Yong, Wang Kai, 2018. Petrogenesis and geological implications of Late Carboniferous leucogranites in Harlik Area, Eastern Tianshan[J]. Earth Science, 43(12): 4443–4458 (in Chinese with English abstract).
    [56]
    陈骏, 陆建军, 陈卫锋, 王汝成, 马东升, 朱金初, 张文兰, 季峻峰. 2008. 南岭地区钨锡铌钽花岗岩及其成矿作用[J]. 高校地质学报, 14(4): 459−473. doi: 10.3969/j.issn.1006-7493.2008.04.001
    [57]
    范文博, 姜能, 翟明国, 胡俊. 2019. 华北克拉通北缘显生宙含石榴石淡色花岗岩: 特征、时代及成因初探[J]. 岩石学报, 35(7): 2237−2258. doi: 10.18654/1000-0569/2019.07.18
    [58]
    郭素淑, 李曙光. 2007. 淡色花岗岩的岩石学和地球化学特征及其成因[J]. 地学前缘, 14(6): 290−298. doi: 10.3321/j.issn:1005-2321.2007.06.036
    [59]
    华仁民, 张文兰, 陈培荣, 王汝成. 2003. 赣南大吉山与漂塘花岗岩及有关成矿作用特征对比[J]. 高校地质学报, 9(4): 609−619. doi: 10.3969/j.issn.1006-7493.2003.04.013
    [60]
    李洁, 黄小龙. 2013. 江西雅山花岗岩岩浆演化及其Ta–Nb富集机制[J]. 岩石学报, 29(12): 4311−4322.
    [61]
    黎彤, 饶纪龙. 1963. 中国岩浆岩的平均化学成分[J]. 地质学报, 43(3): 271−280.
    [62]
    刘红涛, 翟明国, 刘建明, 孙世华. 2002. 华北克拉通北缘中生代花岗岩: 从碰撞后到非造山[J]. 岩石学报, 18(4): 433−448. doi: 10.3969/j.issn.1000-0569.2002.04.001
    [63]
    刘英俊, 曹励明, 李兆麟, 王鹤年, 储同庆, 张景荣. 1984. 元素地球化学[M]. 北京: 科学出版社, 1–517.
    [64]
    刘志超. 2013. 喜马拉雅然巴淡色花岗岩时代与成因[D]. 北京: 中国科学院大学, 1–114.
    [65]
    秦锦华, 王登红, 王岩, 郭志强, 刘善宝, 黄凡, 赵如意. 2024. 南岭成矿带中段成矿规律与找矿前景分析[J]. 中国地质, 51(4): 1095−1122.
    [66]
    沈晓明, 张海祥, 马林. 2013. 阿尔泰南缘晚石炭世淡色花岗岩的发现及其构造意义[J]. 大地构造与成矿学, 37(4): 721−729.
    [67]
    王成辉, 王登红, 孙艳, 赵芝, 李鹏, 陈雷, 李健康, 周芳春, 于扬, 刘善宝, 陆蕾, 刘新星, 赵汀, 杨岳清, 王刚, 陈晨, 陈振宇, 彭琳琳, 陈斌峰, 文春华, 冯文杰, 黄新鹏, 曹圣华, 冷双梁, 樊锡银, 周辉, 黄华谷, 党晓亮, 黄志飚, 黄鸿新. 2022. 华南重点矿集区稀有和稀土矿产调查研究进展[M]. 北京: 科学出版社, 1–357.
    [68]
    王登红, 陈振宇, 黄凡, 王成辉, 赵芝, 陈郑辉, 赵正, 刘新星. 2014. 南岭岩浆岩成矿专属性及相关问题探讨[J]. 大地构造与成矿学, 38(2): 230−238.
    [69]
    王登红, 代鸿章, 于扬, 刘丽君, 代晶晶, 刘善宝, 熊欣, 王裕先, 付小芳, 郝雪峰, 杨荣, 潘蒙, 秦燕, 王成辉, 侯江龙, 袁蔺平, 王伟, 唐屹, 冯永来, 饶魁元, 罗光华, 田世洪, 赵悦. 2021. 大型锂资源基地调查评价的理论方法与实践—以川西甲基卡超大型锂矿为例[M]. 北京: 科学出版社, 1–458.
    [70]
    王登红, 代鸿章, 刘善宝, 李建康, 王成辉, 娄德波, 杨岳清, 李鹏. 2022. 中国锂矿十年来勘查实践和理论研究的十个方面新进展新趋势[J]. 地质力学学报, 28(5): 743−764. doi: 10.12090/j.issn.1006-6616.20222811
    [71]
    吴福元, 刘志超, 刘小驰, 纪伟强. 2015. 喜马拉雅淡色花岗岩[J]. 岩石学报, 31(1): 1−36.
    [72]
    吴福元, 刘小驰, 纪伟强, 王佳敏, 杨雷. 2017. 高分异花岗岩的识别与研究[J]. 中国科学: 地球科学, 47(7): 745−765.
    [73]
    袁忠信, 白鸽, 杨岳清. 1987. 稀有金属花岗岩型矿床成因讨论[J]. 矿床地质, 6(1): 88−96.
    [74]
    曾令森, 高利娥. 2017. 喜马拉雅碰撞造山带新生代地壳深熔作用与淡色花岗岩[J]. 岩石学报, 33(5): 1420−1444.
    [75]
    赵芝, 王登红, 王成辉, 王瑧, 邹新勇, 冯文杰, 周辉, 黄新鹏, 黄华谷. 2019. 离子吸附型稀土找矿及研究新进展[J]. 地质学报, 93(6): 1454−1465. doi: 10.3969/j.issn.0001-5717.2019.06.021
    [76]
    朱小辉, 朱涛, 张欣, 奚任刚, 孟勇, 王凯, 2018. 东天山哈尔里克地区晚石炭世淡色淡色花岗岩成因及其地质意义[J]. 地球科学, 43(12): 4443–4458.
  • Cited by

    Periodical cited type(1)

    1. 温鹏飞,朱清,邹谢华,王高尚,任军平,张津伟,邢凯. 全球铯矿资源特点和开发利用研究. 中国矿业. 2025(02): 438-448 .

    Other cited types(0)

Catalog

    Article views (1965) PDF downloads (711) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return