地质灾害危险性评价中不同机器学习方法优劣对比:以宁强县大安镇为例
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

P694

基金项目:

中国地质调查局项目(DD20230436、DD20221739)和陕西省卫星应用技术中心项目(SCZK2022–CS–1645/001)联合资助。


Comparison of the advantages and disadvantages of different machine learning methods in geohazard risk assessment: Taking Da'an Town, Ningqiang County as an example
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    研究目的 地质灾害的孕育和发生受多种因素的影响,具有不确定性和复杂性,给地质灾害的危险性评价带来一定困难。随着AI技术的发展,智能算法能更准确地计算地质灾害孕育与诱发因素之间的多元复杂非线性关系,大大提高了地质灾害危险性模型的准确性,在区域地质灾害危险性评价中逐步得到应用。研究方法 本文结合宁强县大安镇野外地质调查数据,挑选与地质灾害发生密切相关的12种致灾因子,即高程、坡度、坡高、坡向、坡型、工程地质岩组、断裂距离、水系距离、道路距离、植被覆盖、降雨及地震动峰值等作为危险性分区评价因子。通过构建样本集,运用贝叶斯、随机森林、策略梯度神经网络、KNN和神经网络算法这5种模型进行宁强县大安镇地质灾害危险性建模并进行比较。研究结果 贝叶斯模型(AUC 0.894)表现最好,绝大多数已发生的地质灾害点位于评价的极高和高危险区,且贝叶斯模型计算结果达到预测精度评价要求。结论 在宁强县大安镇地质灾害样本数目很少的情况下选择贝叶斯算法模型进行地质灾害危险性评价,是具有可行性的。

    Abstract:

    This paper is the result of geohazard survey engineering. Objective The occurrence of geohazards are influenced by various factors, which have uncertainty and complexity, making it difficult to assess the risk of geohazards. With the development of AI technology, intelligent algorithms can more accurately calculate the complex and nonlinear relationships between geohazard triggering indexes, greatly improving the accuracy of geological hazard risk assessment models. Methods Based on the field geological survey data of Da'an Town, Ningqiang County, 12 indexes closely related to the occurrence of geohazards were selected, namely elevation, slope, slope height, slope direction, slope type, engineering geological rock formations, fault distance, water system distance, road distance, vegetation coverage, rainfall, and seismic ground motion, as risk zoning evaluation factors. By constructing a sample set, Bayesian, strategy gradient neural network, random forest, KNN and neural network algorithm are used to model and compare the geohazard risk assessment result in Da'an Town, Ningqiang County. Results The experimental results show that the Bayesian model (AUC 0.894) performs the best, with the vast majority of geohazards located in the extremely high and high–risk evaluated areas, and meets the requirements for prediction accuracy evaluation. Conclusions It is feasible to choose Bayesian algorithm models for geological hazard risk assessment when the number of geohazard samples is small.

    参考文献
    相似文献
    引证文献
引用本文

冯旻譞,毛伊敏,贾俊,齐琦,孟晓捷,刘港,高波,高满新. 地质灾害危险性评价中不同机器学习方法优劣对比:以宁强县大安镇为例[J]. 中国地质, 2025, 52(1): 205-214.
FENG Minxuan, MAO Yimin, JIA Jun, QI Qi, MENG Xiaojie, LIU Gang, GAO Bo, GAO Manxin. Comparison of the advantages and disadvantages of different machine learning methods in geohazard risk assessment: Taking Da'an Town, Ningqiang County as an example[J]. Geology in China, 2025, 52(1): 205-214(in Chinese with English abstract).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-10-18
  • 最后修改日期:2024-02-20
  • 录用日期:
  • 在线发布日期: 2025-03-05
  • 出版日期:
亮点文章推荐
古人云:工欲善其事,必先利其器。我国新一轮战略找矿行动已全面启动。用什么方法、什么手段实现增储上产是面临的突出问题。本刊登载了几篇基于新技术、新方法实现找矿突破的实例,供大家参阅,助力新一轮战略找矿目标的实现。
基于随机森林算法的找矿预测——以冈底斯成矿带西段斑岩—浅成低温热液型铜多金属矿为例. 欧阳渊等,2023, 50(2):303-330.
基于重磁资料在山东齐河—禹城探获矽卡岩型富铁矿:对超深覆盖区找矿的启示. 王润生等,2023, 50(2):331-346.
自然伽马曲线重构波阻抗反演在勘探含铀有利成矿砂体中的尝试. 梁建刚等,2023, 50(2):347-358.
宽频大地电磁法寻找“界面型”隐伏金矿床:以黔西南戈塘地区深部找矿为例. 张伟等,2023, 50(2):359-375.
页岩气基础地质调查钻井技术研究进展及展望. 赵洪波等,2023, 50(2):376-394.
关闭